Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes.

F D Yocca, L Iben and E Meller
Molecular Pharmacology June 1992, 41 (6) 1066-1072;
F D Yocca
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Iben
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Meller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies have demonstrated the existence of a large receptor reserve for agonists at somatodendritic 5-hydroxytryptamine1A (5-HT1A) serotonin receptors in the raphe nuclei of the rat. 5-HT1A agonists with anxiolytic properties (e.g., buspirone, gepirone, and ipsapirone) display full intrinsic activity at these receptors but are partial agonists at postsynaptic 5-HT1A receptors, which suggests that the latter sites may be devoid of a receptor reserve. In the present studies, this was directly determined by examining the relationship between receptor occupancy and response at postsynaptic 5-HT1A receptors, in rat hippocampus, mediating the inhibition of forskolin-stimulated adenylyl cyclase activity, using the method of partial irreversible receptor inactivation. Rats were treated with vehicle or the irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), and 24 hr later hippocampi were removed for saturation analysis of [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) binding to 5-HT1A receptors or for adenylyl cyclase assays. EEDQ (1 and 6 mg/kg) dose-dependently reduced the maximal number of [3H]8-OH-DPAT binding sites by 68.5 and 80%, respectively, without altering the Kd. Concentration-response curves were generated for inhibition of forskolin-stimulated adenylyl cyclase activity by 5-HT and the selective 5-HT1A agonist N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT). EEDQ treatment dose-dependently reduced the maximal inhibitory effect of 5-HT [percentage of inhibition: control, 23.6; EEDQ (1 mg/kg), 13.4; EEDQ (6 mg/kg), 8.9], without altering either the slope factor (1.01) or the EC50 (96.4 nM). Analogous results were obtained with DP-5-CT [percentage of maximal inhibition: control, 24.1; EEDQ (1 mg/kg), 15.2; EEDQ (6 mg/kg), 10.7), again without changes in slope factor (0.89) or EC50 (9.9 nM). Analysis of double-reciprocal plots of equieffective concentrations of agonist, followed by calculation of fractional receptor occupancy, revealed a linear relationship between receptor occupancy and response for both 5-HT and DP-5-CT (i.e., an absence of receptor reserve). The receptor specificity of the effect of EEDQ was demonstrated in two ways. First, it was shown that pretreatment of rats with the selective 5-HT1A partial agonist BMY 7378 (10 mg/kg) before EEDQ afforded substantial protection (about 75%) against loss of the inhibitory effect of DP-5-CT on forskolin-stimulated adenylyl cyclase activity. Second, EEDQ did not alter the inhibition of forskolin-stimulated adenylyl cyclase activity induced by the adenosine A1 receptor agonist phenylisopropyladenosine (PIA).(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 6
1 Jun 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes.

F D Yocca, L Iben and E Meller
Molecular Pharmacology June 1, 1992, 41 (6) 1066-1072;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes.

F D Yocca, L Iben and E Meller
Molecular Pharmacology June 1, 1992, 41 (6) 1066-1072;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics