Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Photoactivatable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor.

B Chatrenet, F Kotzba-Hibert, C Mulle, J P Changeux, M P Goeldner and C Hirth
Molecular Pharmacology June 1992, 41 (6) 1100-1106;
B Chatrenet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Kotzba-Hibert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Mulle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J P Changeux
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M P Goeldner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Hirth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nicotinic acetylcholine receptor exhibits at least four different affinity states for agonists such as acetylcholine. In order to identify the structural changes occurring at or near the agonist binding site during the allosteric transitions, three photoactivatable compounds designed to display agonist activity were synthesized. Inhibition constants of these compounds for the cholinergic and the noncompetitive blocker binding sites were determined for the resting and the desensitized states of the receptor. Among these probes, two ligands, AC5 and AC7, displayed a high affinity for the agonist binding site and were poorly recognized by the binding site for noncompetitive blockers. Electrophysiological experiments revealed that these ligands behaved as agonists at low concentrations. We used these two compounds in photolabeling experiments and observed that they were able to inactivate the agonist binding site. Up to 50% of these sites were irreversibly inhibited, depending on the ligand, the irradiation conditions, and the selected receptor state. The compound with the most interesting properties (high affinity and selectivity for the acetylcholine binding site, as well as agonist activity and high photolabeling yield) is AC5, a structural analogue of the fluorescent agonist dansyl-C6-choline, which has been previously used to characterize the different states of the nicotinic receptor. After radioactive synthesis, [3H]AC5 was shown to label all four receptor subunits, in a protectable manner. This radioligand, thus, appears suitable for investigation of the dynamics of allosteric transitions occurring at the activated acetylcholine binding site.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 6
1 Jun 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Photoactivatable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Photoactivatable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor.

B Chatrenet, F Kotzba-Hibert, C Mulle, J P Changeux, M P Goeldner and C Hirth
Molecular Pharmacology June 1, 1992, 41 (6) 1100-1106;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Photoactivatable agonist of the nicotinic acetylcholine receptor: potential probe to characterize the structural transitions of the acetylcholine binding site in different states of the receptor.

B Chatrenet, F Kotzba-Hibert, C Mulle, J P Changeux, M P Goeldner and C Hirth
Molecular Pharmacology June 1, 1992, 41 (6) 1100-1106;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics