Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation.

R Seifert, A Höer, I Schwaner and A Buschauer
Molecular Pharmacology August 1992, 42 (2) 235-241;
R Seifert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Höer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Schwaner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Buschauer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Histamine H1 receptors mediate activation of phospholipase C, with subsequent increases in cytosolic Ca2+ concentration ([Ca2+]i), and H2 receptors mediate accumulation of cAMP. HL-60 promyelocytes possess H2 receptors, but it is not known whether these cells also possess H1 receptors. We studied the effects of histamine on [Ca2+]i and the functional importance of histamine receptors in HL-60 promyelocytes. In these cells, histamine and dimaprit increased [Ca2+]i with EC50 values of 15 microM and 30 microM, respectively. Diphenhydramine inhibited the effect of histamine (100 microM) on [Ca2+]i up to 40%, with an IC50 of 100 nM. Famotidine and cimetidine diminished the effect of histamine (100 microM) up to 75%, with IC50 values of 85 nM and 300 nM, respectively. Diphenhydramine plus famotidine abolished histamine-induced rises in [Ca2+]i. Impromidine, with an IC50 of 100 nM, abolished the effect of histamine (100 microM) on [Ca2+]i. Diphenhydramine, famotidine, cimetidine, and impromidine showed marked noncompetitive antagonism with histamine. Histamine-induced increases in [Ca2+]i were largely due to influx of Ca2+ from the extracellular space. Ca2+ influx was inhibited by 1-(beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl)-1H-imida zole hydrochloride (SK&F 96365). Histamine activated phospholipase C. Histamine induced expression of formyl peptide receptors, which effect was abolished by famotidine. In U-937 promonocytes and in the human erythroleukemia cell lines HEL and K-562, histamine did not induce rises in [Ca2+]i. Our data suggest the following. (i) In HL-60 promyelocytes, histamine increases [Ca2+]i predominantly via H2 receptors and to a lesser extent via H1 receptors. (ii) The agonist/antagonist profile of the H2 receptor-mediated increases in [Ca2+]i differs markedly from that for cAMP accumulation, suggesting the involvement of different H2 receptor subtypes. (iii) In HL-60 promyelocytes, histamine activates nonselective cation channels and induces functional differentiation via H2 receptors.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 42, Issue 2
1 Aug 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation.

R Seifert, A Höer, I Schwaner and A Buschauer
Molecular Pharmacology August 1, 1992, 42 (2) 235-241;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Histamine increases cytosolic Ca2+ in HL-60 promyelocytes predominantly via H2 receptors with an unique agonist/antagonist profile and induces functional differentiation.

R Seifert, A Höer, I Schwaner and A Buschauer
Molecular Pharmacology August 1, 1992, 42 (2) 235-241;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics