Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands.

J Hu, S Z Wang, C Forray and E E el-Fakahany
Molecular Pharmacology August 1992, 42 (2) 311-321;
J Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Z Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Forray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E E el-Fakahany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A large number of diverse pharmacological agents bind to a secondary domain on the muscarinic receptor, to influence allosterically the interaction of ligands at the primary binding site. Based on common structural features of these antagonists, we examined the interaction of protamine, an endogenous polycationic peptide, and of polyamines with muscarinic receptors in rat heart. Our results provide several lines of qualitative evidence that protamine allosterically modulates the conformation of muscarinic receptors, in a marked negatively cooperative manner. It decelerated the dissociation of N-[3H]methylscopolamine ([3H] NMS) initiated by atropine, in a concentration-dependent fashion. Inhibition by protamine of [3H]NMS binding at equilibrium showed a distinct plateau, which increased in magnitude at higher ligand concentrations. Scatchard analysis of saturation isotherms of [3H]NMS binding in the absence and presence of protamine indicated that protamine did not alter Bmax in a statistically significant fashion, although there was a trend of a concentration-dependent increase in this parameter. On the other hand, it caused a marked concentration-dependent decrease in the affinity of [3H]NMS, and this effect reached a ceiling limit. However, there were marked quantitative deviations of the interaction of protamine from a simple ternary allosteric model. Some of these discrepancies could be explained by the tendency of protamine to increase Bmax. The allosteric actions of protamine demonstrated in kinetic and equilibrium experiments were selective for m1 and m2 muscarinic receptors, compared with m3, m4, and m5 receptors, as studied in Chinese hamster ovary cells transfected with the genes of the different muscarinic receptors. Arginine residues play an important role in the allosteric interaction of protamine, inasmuch as poly-L-arginine qualitatively mimicked the effects of protamine. In contrast, no effects of the polyamines spermine, spermidine, and putrescine were observed on [3H]NMS binding. This is the first report on the allosteric modulation of muscarinic receptors by an endogenous peptide.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 42, Issue 2
1 Aug 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands.

J Hu, S Z Wang, C Forray and E E el-Fakahany
Molecular Pharmacology August 1, 1992, 42 (2) 311-321;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Complex allosteric modulation of cardiac muscarinic receptors by protamine: potential model for putative endogenous ligands.

J Hu, S Z Wang, C Forray and E E el-Fakahany
Molecular Pharmacology August 1, 1992, 42 (2) 311-321;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics