Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Indirect effect of guanine nucleotides on antagonist binding to A1 adenosine receptors: occupation of cryptic binding sites by endogenous vesicular adenosine.

M R Prater, H Taylor, R Munshi and J Linden
Molecular Pharmacology November 1992, 42 (5) 765-772;
M R Prater
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Munshi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Linden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Guanine nucleotides such as guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) have been found to increase the binding of antagonists to adenosine A1 receptors. This response can be attributed either to a direct effect of GTP on receptors to increase antagonist affinity or to an indirect effect to decrease the affinity of receptors for a pool of endogenous adenosine that cannot be readily removed from membranes. In this study, adenosine content was measured in preparations of membranes and 3-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate (CHAPS)-solubilized receptors by a sensitive radioimmunoassay. In both preparations, pools of adenosine (2.5-10 pmol/mg of protein) were detected that were resistant to deamination by added adenosine deaminase (0.5-3 units/ml) unless membrane lipids were first dissolved in acetone. Electron microscopic examination of crude CHAPS-solubilized receptors revealed the existence of small vesicles (< 1 microns in diameter). Furthermore, most "solubilized" receptors were retained by a 0.1-microns filter. The effects of GTP gamma S were evaluated on the binding of an antagonist, 3-(4-amino-3-125I-phenethyl)-1-propyl-8-cyclopentylxanthine (125I-BW-A844U), to A1 receptors of bovine brain membranes, receptors solubilized in CHAPS (crude solubilized), or receptors partially co-purified with G proteins by agonist affinity chromatography (partially purified). GTP gamma S (10 microM) increased antagonist binding to membranes (20-50%) and crude CHAPS-solubilized receptors (> 200%) but increased binding to partially purified receptors by only 10-15%. GTP gamma S decreased agonist (125I-N6-aminobenzyladenosine) binding and increased antagonist Bmax, but did not significantly decrease (5%) the dissociation rate of the antagonist. Omission of Mg2+ mimicked the effects of GTP gamma S on agonist and antagonist binding and increased both the association and dissociation rates of 125I-BW-A844U. These data suggest that a Mg(2+)-dependent GTP gamma S-induced increase in antagonist binding to membranes and solubilized receptors is primarily due to unmasking of cryptic binding sites occupied by contaminating vesicular adenosine. These findings are consistent with the observation that adenosine receptor antagonists have been found to have little or no inverse agonist physiological effects in well oxygenated tissues.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 42, Issue 5
1 Nov 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Indirect effect of guanine nucleotides on antagonist binding to A1 adenosine receptors: occupation of cryptic binding sites by endogenous vesicular adenosine.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Indirect effect of guanine nucleotides on antagonist binding to A1 adenosine receptors: occupation of cryptic binding sites by endogenous vesicular adenosine.

M R Prater, H Taylor, R Munshi and J Linden
Molecular Pharmacology November 1, 1992, 42 (5) 765-772;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Indirect effect of guanine nucleotides on antagonist binding to A1 adenosine receptors: occupation of cryptic binding sites by endogenous vesicular adenosine.

M R Prater, H Taylor, R Munshi and J Linden
Molecular Pharmacology November 1, 1992, 42 (5) 765-772;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics