Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Novel action of nitric oxide as mediator of N-methyl-D-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum.

S S Smith and J Li
Molecular Pharmacology January 1993, 43 (1) 1-5;
S S Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nitric oxide (NO) is an intercellular mediator produced within the cerebellum and other central nervous system sites. Results from the present study suggest a novel role for this gaseous second messenger in mediating the stimulatory actions of the excitatory amino acid agonist N-methyl-D-aspartate (NMDA) on turnover of phosphatidylinositol (PI) in the neonatal cerebellum. Activation of the NMDA receptor stimulates PI turnover in developing cerebellum when these neurons are in a depolarized state, but the mechanism underlying this effect is unknown. We measured changes in PI hydrolysis induced by NMDA in the presence of baclofen, which is known to depolarize neurons by activating presynaptic inhibitory gamma-aminobutyric acidB autoreceptors. NMDA increased PI hydrolysis by 80% in the presence of 1 microM baclofen. This modulatory action of NMDA was prevented by two competitive inhibitors of NO synthase, L-NG-monomethylarginine and L-N omega-nitroarginine, as well as by hemoglobin, which binds NO. Inhibition of NMDA-induced PI hydrolysis by L-NG-monomethylarginine was reversed by prior administration of L-arginine (200 microM), the physiological substrate of NO synthase. Arginine (500 microM) alone was also able to increase PI hydrolysis significantly. Superoxide dismutase, which prolongs the half-life of NO, also significantly increased the ability of NMDA to stimulate PI hydrolysis. However, NO-induced activation of the cGMP pathway did not appear to be responsible for the NMDA-induced increase in PI hydrolysis, because addition of 8-bromo-cGMP decreased this parameter, and methylene blue, which blocks guanylate cyclase activity, did not inhibit the PI hydrolysis evoked by NMDA receptor activation. These results suggest that NMDA receptor activation acts to release NO, which then acts through a novel pathway to enhance the hydrolysis of PI in the developing rat cerebellum. This novel role for NO in mediating the stimulatory actions of NMDA on PI hydrolysis may be important for developmental processes in the central nervous system.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 43, Issue 1
1 Jan 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Novel action of nitric oxide as mediator of N-methyl-D-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Novel action of nitric oxide as mediator of N-methyl-D-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum.

S S Smith and J Li
Molecular Pharmacology January 1, 1993, 43 (1) 1-5;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Novel action of nitric oxide as mediator of N-methyl-D-aspartate-induced phosphatidylinositol hydrolysis in neonatal rat cerebellum.

S S Smith and J Li
Molecular Pharmacology January 1, 1993, 43 (1) 1-5;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics