Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Topoisomerase II activity involved in cleaving DNA into topological domains is altered in a multiple drug-resistant Chinese hamster ovary cell line.

D M Sullivan, L A Eskildsen, K R Groom, C D Webb, M D Latham, A W Martin, S R Wellhausen, P E Kroeger and T C Rowe
Molecular Pharmacology February 1993, 43 (2) 207-216;
D M Sullivan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L A Eskildsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K R Groom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C D Webb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M D Latham
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A W Martin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S R Wellhausen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P E Kroeger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T C Rowe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Drug resistance to inhibitors of DNA topoisomerase II can result from qualitative or quantitative alterations in the target enzyme, topoisomerase II, or from perturbations in drug transport that may or may not involve P-glycoprotein. In the present study, a drug-resistant Chinese hamster ovary cell line, SMR16, was selected in the presence of an epipodophyllotoxin (VP-16) and was found to be cross-resistant to all classes of topoisomerase II inhibitors (3-35-fold). The 3-fold level of resistance of these cells to vincristine is likely due to diminished uptake of this drug, and this is not mediated by overexpression of P-glycoprotein. No alteration in transport of VP-16 was observed. Immunoblotting with several polyclonal anti-topoisomerase II antibodies demonstrated that the resistant cells contain approximately two-thirds of the parental enzyme amount. The topoisomerase II catalytic activity present in 0.35 M NaCl nuclear extracts paralleled this decrease. VP-16- and 4'-(9-acridinylamino)methanesulfon-m-anisidide-induced DNA damage, mediated by topoisomerase II, was found to be decreased 10-12-fold in both intact SMR16 cells and nuclei isolated from these cells, when measured by alkaline filter elution. However, the VP-16-induced DNA cleavage activity present in 0.35 M NaCl nuclear extracts of the resistant cells was attenuated only 2-fold, relative to wild-type cells. Homogeneous preparations of the enzyme obtained from resistant cells demonstrated the same cleavage and catalytic activity as purified wild-type topoisomerase II. Analysis by pulse-field gel electrophoresis of the DNA isolated from VM-26- and 4'-(9-acridinylamino)methanesulfon-m-anisidide-treated sensitive and resistant cells demonstrated significantly less conversion of SMR16 chromosomal DNA into 50-150-kilobase DNA fragments. Chinese hamster ovary SMR16 cells are apparently resistant to topoisomerase II poisons because the topoisomerase II that defines the DNA topological domains is either decreased in amount or insensitive to drug action.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 43, Issue 2
1 Feb 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Topoisomerase II activity involved in cleaving DNA into topological domains is altered in a multiple drug-resistant Chinese hamster ovary cell line.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Topoisomerase II activity involved in cleaving DNA into topological domains is altered in a multiple drug-resistant Chinese hamster ovary cell line.

D M Sullivan, L A Eskildsen, K R Groom, C D Webb, M D Latham, A W Martin, S R Wellhausen, P E Kroeger and T C Rowe
Molecular Pharmacology February 1, 1993, 43 (2) 207-216;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Topoisomerase II activity involved in cleaving DNA into topological domains is altered in a multiple drug-resistant Chinese hamster ovary cell line.

D M Sullivan, L A Eskildsen, K R Groom, C D Webb, M D Latham, A W Martin, S R Wellhausen, P E Kroeger and T C Rowe
Molecular Pharmacology February 1, 1993, 43 (2) 207-216;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics