Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs.

F J Monsma Jr, Y Shen, R P Ward, M W Hamblin and D R Sibley
Molecular Pharmacology March 1993, 43 (3) 320-327;
F J Monsma Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Shen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Ward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M W Hamblin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D R Sibley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have used the polymerase chain reaction technique to selectively amplify a guanine nucleotide-binding protein-coupled receptor cDNA sequence from rat striatal mRNA that exhibits high homology to previously cloned serotonin receptors. Sequencing of a full length clone isolated from a rat striatal cDNA library revealed an open reading frame of 1311 base pairs, encoding a 437-residue protein with seven hydrophobic regions. Within these hydrophobic regions, this receptor was found to be 41-36% identical to the following serotonin [5-hydroxytryptamine (5-HT)] receptors: 5-HT2 > 5-HT1D > 5-HT1C > 5-HT1B > 5-HT1A > 5-HT1E. Northern blots revealed a approximately 4.2-kilobase transcript localized in various brain regions, with the following rank order of abundance: striatum > olfactory tubercle > cerebral cortex > hippocampus. Expression of this clone in COS-7 cells resulted in the appearance of high affinity, saturable binding of (+)-[2-125I] iodolysergic acid diethylamide ([125I]LSD) with a Kd of 1.26 nM. Among endogenous biogenic amines, only 5-HT completely inhibited [125I]LSD binding (Ki = 150 nM). The inhibition of [125I]LSD binding by other serotonergic agonists and antagonists revealed a pharmacological profile that does not correlate with that of any previously described serotonin receptor subtype. In addition, this receptor exhibits high affinity for a number of tricyclic antipsychotic and antidepressant drugs, including clozapine, amoxipine, and amitriptyline. In HEK-293 cells stably transfected with this receptor, serotonin elicits a potent stimulation of adenylyl cyclase activity, which is blocked by antipsychotic and antidepressant drugs. The distinct structural and pharmacological properties of this receptor site indicate that it represents a completely novel subtype of serotonin receptor. Based on its affinity for tricyclic psychotropic drugs and its localization to limbic and cortical regions of the brain, it is likely that this receptor may play a role in several neuropsychiatric disorders that involve serotonergic systems.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 43, Issue 3
1 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs.

F J Monsma, Y Shen, R P Ward, M W Hamblin and D R Sibley
Molecular Pharmacology March 1, 1993, 43 (3) 320-327;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs.

F J Monsma, Y Shen, R P Ward, M W Hamblin and D R Sibley
Molecular Pharmacology March 1, 1993, 43 (3) 320-327;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics