Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor.

D B Wainscott, M L Cohen, K W Schenck, J E Audia, J S Nissen, M Baez, J D Kursar, V L Lucaites and D L Nelson
Molecular Pharmacology March 1993, 43 (3) 419-426;
D B Wainscott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M L Cohen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K W Schenck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Audia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J S Nissen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Baez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J D Kursar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V L Lucaites
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The rat 5-hydroxytryptamine (5-HT)2F (serotonin2F) receptor is a newly cloned member of the 5-HT2/1C receptor family. The pharmacology of the 5-HT2F receptor was explored using a variety of structurally different compounds in a radioligand binding assay. In addition, the 5-HT2F receptor was shown to stimulate production of inositol 1,4,5-trisphosphate in the transformed cells. Based on the affinities of the compounds tested, their known affinities for certain of the other 5-HT receptors, and the fact that activation of the cloned 5-HT2F receptor stimulates inositol 1,4,5-trisphosphate production, the 5-HT2F receptor was determined to be a novel receptor and a member of the 5-HT2/1C receptor family. In addition, several agonists and partial agonists were evaluated for contractile activity in the rat stomach fundus, and these activities were correlated with their binding affinities at the 5-HT2F receptor. A highly significant correlation was found, providing additional evidence that is consistent with the 5-HT2F receptor being the stomach fundal contractile receptor. [3H]5-HT had high affinity for this receptor both at 37 degrees and at 0 degree (Kd = 7.87 +/- 0.55 and 0.12 +/- 0.02 nM, respectively). The difference in affinity for [3H]5-HT at the two temperatures prompted an investigation of potential temperature-dependent differences in the binding affinities of agonists versus antagonists. Agonists such as 5-HT, 5-methoxytryptamine, etc., showed higher affinity for the 5-HT2F receptor at 0 degree than at 37 degrees, whereas antagonists such as methysergide, 1-naphthylpiperazine, etc., showed no difference in affinity for this receptor at the two different temperatures. Therefore, the affinity of a compound for the 5-HT2F receptor at 37 degrees versus 0 degree was shown to be useful for predicting agonist or antagonist activity. Additionally, information is provided about some of the structural requirements for the affinity of certain tryptamines at the 5-HT2F receptor.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 43, Issue 3
1 Mar 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor.

D B Wainscott, M L Cohen, K W Schenck, J E Audia, J S Nissen, M Baez, J D Kursar, V L Lucaites and D L Nelson
Molecular Pharmacology March 1, 1993, 43 (3) 419-426;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor.

D B Wainscott, M L Cohen, K W Schenck, J E Audia, J S Nissen, M Baez, J D Kursar, V L Lucaites and D L Nelson
Molecular Pharmacology March 1, 1993, 43 (3) 419-426;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics