Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA.

R Honchel, I A Aksoy, C Szumlanski, T C Wood, D M Otterness, E D Wieben and R M Weinshilboum
Molecular Pharmacology June 1993, 43 (6) 878-887;
R Honchel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I A Aksoy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Szumlanski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T C Wood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D M Otterness
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E D Wieben
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R M Weinshilboum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Thiopurine methyltransferase (TPMT) catalyzes the S-methylation of thiopurine drugs such as 6-mercaptopurine. Levels of TPMT activity in human tissue are controlled by a common genetic polymorphism that is an important factor responsible for individual variation in thiopurine drug toxicity and therapeutic efficacy. Our goal was to purify, to obtain a partial amino acid sequence for, and to clone and express cDNA for human TPMT as a first step in determining the molecular basis for this genetic polymorphism. Human kidney TPMT was purified, the protein was subjected to limited proteolysis, and amino acid sequence information was obtained from the resultant peptide fragments. Primers based on the amino acid sequence information were used to amplify a unique sequence from human liver cDNA by use of the polymerase chain reaction. Because TPMT has been reported to be present in the colon, T84 human colon carcinoma cells were studied and were found to express TPMT activity with biochemical properties similar to those of the human kidney and liver enzymes. Oligonucleotide probes based on the human kidney TPMT amino acid sequence were then used to screen a T84 human colon carcinoma cell cDNA library. A 2.7-kilobase cDNA clone was isolated that contained an open reading frame of 735 nucleotides, which encoded a protein of 245 amino acids. The deduced amino acid sequence of the encoded protein included one 24- and two separate 12-amino acid sequences identical to those obtained by sequencing proteolytic fragments of purified human kidney TPMT. Transcripts were made in vitro from the open reading frame of the cDNA clone. These transcripts were translated in a rabbit reticulocyte lysate system, and the resulting translation product comigrated with human kidney TPMT in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The T84 cell cDNA clone, truncated within the 3' untranslated region at an Sstl restriction site, was then used to create an expression construct with the eukaryotic expression vector P91023(B), and this construct was used to transfect COS-1 cells. The transfected cells expressed a high level of TPMT enzymatic activity, and this activity displayed a pattern of inhibition by TPMT inhibitors identical to that of human kidney and T84 human colon carcinoma cell TPMT. Cloning of cDNA for this important drug-metabolizing enzyme may make it possible to define the molecular basis of the TPMT genetic polymorphism in humans.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 43, Issue 6
1 Jun 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA.

R Honchel, I A Aksoy, C Szumlanski, T C Wood, D M Otterness, E D Wieben and R M Weinshilboum
Molecular Pharmacology June 1, 1993, 43 (6) 878-887;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA.

R Honchel, I A Aksoy, C Szumlanski, T C Wood, D M Otterness, E D Wieben and R M Weinshilboum
Molecular Pharmacology June 1, 1993, 43 (6) 878-887;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics