Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

High affinity amylin binding sites in rat brain.

K Beaumont, M A Kenney, A A Young and T J Rink
Molecular Pharmacology September 1993, 44 (3) 493-497;
K Beaumont
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Kenney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A A Young
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T J Rink
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Amylin, a 37-amino acid peptide structurally related to calcitonin gene-related peptide, is synthesized in and released along with insulin from pancreatic beta-cells. Amylin is proposed to act as an endocrine partner to insulin, in part through actions upon skeletal muscle that promote cycling of gluconeogenic precursors to liver. We report here that binding sites with high affinity (Kd = 27 pm) for radioiodinated rat amylin are present in the nucleus accumbens region of rat brain. Competition experiments show that sites measured in nucleus accumbens membranes have high affinity for rat amylin, lower affinity for rat calcitonin gene-related peptides, and very low affinity for rat calcitonin. In contrast to rat calcitonin, salmon calcitonin has a high affinity for these sites, indicating that it shares critical binding determinants with amylin. We further tested whether salmon calcitonin shares with amylin the ability to regulate glycogen metabolism in rat skeletal muscle. Salmon calcitonin potently inhibits insulin-stimulated glucose incorporation into rat soleus muscle glycogen, suggesting that rat skeletal muscle may also contain receptor populations that have high affinity for both amylin and salmon calcitonin.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 44, Issue 3
1 Sep 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
High affinity amylin binding sites in rat brain.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

High affinity amylin binding sites in rat brain.

K Beaumont, M A Kenney, A A Young and T J Rink
Molecular Pharmacology September 1, 1993, 44 (3) 493-497;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

High affinity amylin binding sites in rat brain.

K Beaumont, M A Kenney, A A Young and T J Rink
Molecular Pharmacology September 1, 1993, 44 (3) 493-497;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics