Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Beta-[3H]funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides.

L Y Liu-Chen, C Chen and C A Phillips
Molecular Pharmacology October 1993, 44 (4) 749-756;
L Y Liu-Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A Phillips
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We previously showed that under defined conditions beta-[3H]funaltrexamine (beta-[3H]FNA) covalently labeled mu-opioid receptors with high specificity in bovine striatal membranes. beta-[3H]FNA-labeled mu-opioid receptors migrated as a broad band with a molecular mass range of 68-97 kDa. It is controversial whether beta-FNA binds irreversibly to mu-opioid receptors in other species. In this study, we demonstrated that beta-[3H]FNA also labeled mu-opioid receptors with high specificity in brain membranes of the guinea pig, rat, and mouse. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography revealed that in each species beta-[3H]FNA specifically bound to a protein in which labeling was greatly reduced by naloxone. These labeled receptors had broad molecular mass ranges, and the molecular masses were different among these species, in the order of cow > guinea pig > rat > mouse. Membranes were subjected to solubilization with 2% Triton X-100 and wheat germ lectin (WGL) affinity chromatography. N-Acetylglucosamine eluted a peak of radioactivity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography showed that in all four species the mu receptor was the only protein labeled with beta-[3H]FNA in the WGL eluate. The molecular masses of labeled mu-opioid receptors were 70-88 kDa (median, 77 kDa) for the cow, 66-80 kDa (median, 72 kDa) for the guinea pig, 60-75 kDa (median, 67 kDa) for the rat, and 60-72 kDa (median, 66 kDa) for the mouse. In addition, we investigated the nature of the carbohydrate moieties linked to the receptor protein and whether the species variation in the molecular mass was due to variable degrees of glycosylation. The bovine WGL eluate was treated with various glycosidases. Neuraminidase treatment decreased the receptor molecular mass by 6-7 kDa, whereas alpha-mannosidase had no effect. Removal of N-linked carbohydrates at asparagine residues by peptide-N4-[N-acetyl-beta-glucosaminyl]asparagine amidase (N-Glycanase) resulted in a much sharper specifically labelled protein band of 43 kDa. These results indicate that mu-opioid receptors are heavily glycosylated and the major carbohydrate moieties are of the complex type, N-linked to asparagine. After the WGL eluates for the four species were treated with N-Glycanase, the labeled receptors became much sharper bands with very similar molecular masses, i.e., 43 kDa for the cow and guinea pig, 39 kDa for the rat, and and 40 kDa for the mouse.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 44, Issue 4
1 Oct 1993
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Beta-[3H]funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Beta-[3H]funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides.

L Y Liu-Chen, C Chen and C A Phillips
Molecular Pharmacology October 1, 1993, 44 (4) 749-756;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Beta-[3H]funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides.

L Y Liu-Chen, C Chen and C A Phillips
Molecular Pharmacology October 1, 1993, 44 (4) 749-756;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics