Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.

H Yano, L H Philipson, J L Kugler, Y Tokuyama, E M Davis, M M Le Beau, D J Nelson, G I Bell and J Takeda
Molecular Pharmacology May 1994, 45 (5) 854-860;
H Yano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L H Philipson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Kugler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Tokuyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E M Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M M Le Beau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D J Nelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G I Bell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Takeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent studies have identified a new family of inwardly rectifying K+ channels, members of which are known by the acronyms ROMK1, IRK1, and GIRK1. We have isolated cDNAs encoding the human homologue of ROMK1 from an adult kidney cDNA library. The sequences of the human kidney ROMK1 cDNA clones indicated that they were derived from at least two types of mRNAs, human ROMK1A and human ROMK1B, differing in sequence at their 5' ends. The isolation of the human ROMK1 gene, localized to chromosome band 11q24 by fluorescence in situ hybridization, indicated that the different ROMK1 transcripts were generated by alternative splicing. Human ROMK1A mRNA was predicted to encode a protein of 389 amino acids, having 93% identity with the 391-residue rat ROMK1 protein, and expression studies in Xenopus oocytes indicated that it encoded a Ba(2+)-sensitive inwardly rectifying K+ channel with properties similar to those reported for cloned rat ROMK1. Human ROMK1B mRNA was predicted to encode a protein of 372 amino acids whose sequence was truncated at the amino terminus but otherwise identical to that of the human ROMK1A protein. Translation of human ROMK1B mRNA was predicted to initiate at a codon corresponding to Met-18 of human ROMK1A mRNA. Reverse transcriptase-polymerase chain reaction amplification of human kidney mRNA revealed human ROMK1A and -B transcripts as well as a third type of transcript, human ROMK1C mRNA, which was predicted to encode a protein identical to human ROMK1B. Human ROMK1A, -B, and -C transcripts were identified in kidney, whereas only human ROMK1A mRNA could be detected in pancreatic islets and other tissues in which human ROMK1 was expressed at low levels. Thus, tissue-specific alternative splicing of human ROMK1 mRNA may result in the expression of a family of ROMK1 proteins.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 45, Issue 5
1 May 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.

H Yano, L H Philipson, J L Kugler, Y Tokuyama, E M Davis, M M Le Beau, D J Nelson, G I Bell and J Takeda
Molecular Pharmacology May 1, 1994, 45 (5) 854-860;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA.

H Yano, L H Philipson, J L Kugler, Y Tokuyama, E M Davis, M M Le Beau, D J Nelson, G I Bell and J Takeda
Molecular Pharmacology May 1, 1994, 45 (5) 854-860;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics