Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Bioactivation of arachidonic acid by the cytochrome P450 monooxygenases of guinea pig lung: the orthologue of cytochrome P450 2B4 is solely responsible for formation of epoxyeicosatrienoic acids.

L C Knickle and J R Bend
Molecular Pharmacology June 1994, 45 (6) 1273-1280;
L C Knickle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R Bend
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Guinea pig lung microsomes converted arachidonic acid (AA) to two classes of cytochrome P450 (P450)-dependent metabolites, 16- through 20-hydroxyeicosatetraenoic acids [(16-20)-OH-AA] and epoxyeicosatrienoic acids (EETs). The rate of formation of (16-20)-OH-AA was approximately 3-fold higher in microsomes from beta-naphthoflavone-induced versus untreated animals. In microsomes from untreated or induced animals EETs, the major class of P450 metabolites in guinea pig lung, were formed in a regioselective manner, with 8,9-, 11,12-, and 14,15-regioisomers accounting for > or = 90% of the total EETs. With isozyme-selective inhibitors and inhibitory antibodies the role of individual pulmonary P450 isozymes in AA metabolism was examined. Metyrapone and SKF-525A (P450 2B selective) inhibited EET formation by > or = 85% with little effect on (16-20)-OH-AA formation. 1-Aminobenzotriazole (1 mM), a mechanism-based inhibitor with low isozyme selectivity, inhibited the formation of both classes of metabolites by > 95%, whereas N-alpha-methylbenzyl-1-aminobenzotriazole (1 microM), a P450 2B-selective mechanism-based inhibitor, abolished EET formation with little effect on (16-20)-OH-AA formation. Antibodies to rabbit P450 2B4 also abolished EET formation without inhibiting the formation of (16-20)-OH-AA, whereas antibodies to rabbit P450 4B1 did not inhibit the formation of either class of metabolites. alpha-Naphthoflavone (P450 1A1 selective in lung) did not inhibit the formation of either class of metabolites. These data demonstrate that the guinea pig orthologue of P450 2B4 is solely responsible for the bioactivation of AA to EETs in guinea pig lung and that a form of P450 other than a 2B, 4B, or 1A isozyme, which is inducible by beta-naphthoflavone, is responsible for (16-20)-OH-AA formation.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 45, Issue 6
1 Jun 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bioactivation of arachidonic acid by the cytochrome P450 monooxygenases of guinea pig lung: the orthologue of cytochrome P450 2B4 is solely responsible for formation of epoxyeicosatrienoic acids.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Bioactivation of arachidonic acid by the cytochrome P450 monooxygenases of guinea pig lung: the orthologue of cytochrome P450 2B4 is solely responsible for formation of epoxyeicosatrienoic acids.

L C Knickle and J R Bend
Molecular Pharmacology June 1, 1994, 45 (6) 1273-1280;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Bioactivation of arachidonic acid by the cytochrome P450 monooxygenases of guinea pig lung: the orthologue of cytochrome P450 2B4 is solely responsible for formation of epoxyeicosatrienoic acids.

L C Knickle and J R Bend
Molecular Pharmacology June 1, 1994, 45 (6) 1273-1280;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics