Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cooperative interactions between general anesthetics and QX-222 within the pore of the acetylcholine receptor ion channel.

J P Dilger and A M Vidal
Molecular Pharmacology July 1994, 46 (1) 169-175;
J P Dilger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A M Vidal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To test the hypothesis that general anesthetics block nicotinic acetylcholine receptor channels by binding within the pore of the channel, we looked for competitive interactions between ether and QX-222 at the single channel current level. Experiments were performed on outside-out patches excised from BC3H-1 cells. QX-222 causes channels to flicker as it repeatedly binds within the pore of the channel and blocks the flow of current through the channel. Ether reduces the apparent unitary conductance of the channel. This effect of ether may be due to frequent, short-lived, unresolved, blockages of the channel. When both ether and QX-222 are applied, the effects of both drugs are seen on single channels. However, the duration of QX-222 blocking events are longer when ether is present; the duration of block is 0.89 +/- 0.06 ms with 30 microM QX-222 alone and 2.23 +/- 0.37 ms with 30 microM QX-222 + 20 mM ether (n = 5 +/- S.D.; -100 mV). Similar results are obtained when butanol is used in place of ether. We conclude that ether and QX-222 do not compete for a common binding site. Conversely, ether decreases the dissociation rate of QX-222. The simplest interpretation of these data is that the binding sites for ether and the aromatic moiety of QX-222 are distinct but close to each other; when ether is bound to its site, the binding of QX-222 is stabilized. We cannot, however, discount the possibility that ether stabilizes QX-222 by binding to a remote site and allosterically modifying the pore of the channel.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 46, Issue 1
1 Jul 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cooperative interactions between general anesthetics and QX-222 within the pore of the acetylcholine receptor ion channel.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cooperative interactions between general anesthetics and QX-222 within the pore of the acetylcholine receptor ion channel.

J P Dilger and A M Vidal
Molecular Pharmacology July 1, 1994, 46 (1) 169-175;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cooperative interactions between general anesthetics and QX-222 within the pore of the acetylcholine receptor ion channel.

J P Dilger and A M Vidal
Molecular Pharmacology July 1, 1994, 46 (1) 169-175;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics