Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors.

A C Hargreaves, S C Lummis and C W Taylor
Molecular Pharmacology December 1994, 46 (6) 1120-1128;
A C Hargreaves
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S C Lummis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C W Taylor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have used single-cell imaging of fura-2-loaded cells to examine the Ca2+ signals evoked by activation of 5-hydroxytryptamine type 3 (5-HT3) receptors in undifferentiated N1E-115 neuroblastoma cells and in human embryonic kidney (HEK) 293 cells transfected with either of the two cloned 5-HT3 receptor subunits. The selective 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (mCPBG) caused a concentration-dependent increase in the cytoplasmic Ca2+ concentration ([Ca2+]i) in N1E-115 cells and in HEK 293 cells transfected with either the 5-HT3 A subunit or the 5-HT3 As subunit. In each case, the [Ca2+]i rise was steeply dependent on the mCPBG concentration (nH = 2-4) and abolished by removal of extracellular Ca2+ or addition of ondansetron. Pretreatment of N1E-115 cells with thapsigargin, caffeine, and ryanodine to deplete intracellular Ca2+ stores had no effect on the mCPBG-evoked Ca2+ signals, indicating that they result entirely from stimulated Ca2+ entry. The steep concentration-effect curves therefore are not a consequence of amplification of Ca2+ influx by Ca(2+)-induced Ca2+ release from intracellular stores and probably reflect cooperative activation of 5-HT3 receptors by mCPBG. Depolarization of transfected HEK 293 cells with medium containing increased K+ concentrations invariably failed to evoke an increase in [Ca2+]i, confirming the absence of voltage-gated Ca2+ channels and indicating that the mCPBG-evoked rise in [Ca2+]i results from Ca2+ permeation of 5-HT3 receptors. However, in N1E-115 cells and transfected HEK 293 cells, both extracellular Na+ and K+ substantially inhibited the Ca2+ influx evoked by activation of 5-HT3 receptors, possibly by inhibition of agonist binding or by competition with Ca2+ for permeation of the channel. We conclude that 5-HT3 receptors are Ca2+ permeant, that the Ca2+ influx is sufficient to generate a significant rise in [Ca2+]i, and that, because the A and As subunits behave similarly, conflicting electrophysiological analyses of Ca2+ currents cannot be explained by differences between these two subunits.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 46, Issue 6
1 Dec 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors.

A C Hargreaves, S C Lummis and C W Taylor
Molecular Pharmacology December 1, 1994, 46 (6) 1120-1128;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors.

A C Hargreaves, S C Lummis and C W Taylor
Molecular Pharmacology December 1, 1994, 46 (6) 1120-1128;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics