Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-D-aspartic acid receptor complex.

T Priestley and J A Kemp
Molecular Pharmacology December 1994, 46 (6) 1191-1196;
T Priestley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A Kemp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The N-methyl-D-aspartate (NMDA) receptor is unique among the ligand-gated ion channels, in that the gating process requires the binding of two independent coagonists, glutamate and glycine. Receptor binding experiments have suggested that the coagonist recognition sites interact with one another in an allosteric manner, and previous work in this laboratory has provided additional functional support in favor of an allosteric coupling; the affinity of glutamate for its recognition site was reduced when a partial agonist, (+)-HA-966, occupied the glycine site, compared with the affinity when glycine itself was bound to the receptor. The present experiments have taken these observations a step further and compare the effects of several glycine site ligands with different affinities and intrinsic activities (determined from equilibrium concentration-response curves) on glutamate off-rate. Thus, the dissociation rate for the decay of glutamate-activated membrane currents in voltage-clamped rat cortical neurons was fastest (160 +/- 28 msec) in the presence of saturating concentrations of (+)-HA-966 and progressively slower in the presence of D-cycloserine (258 +/- 27 msec), aminocyclopropanecarboxylic acid (330 +/- 21 msec), L-alanine (375 +/- 28 msec), and glycine (502 +/- 42 msec). We have also measured the affinities and intrinsic activities of several NMDA receptor ligands and report that a reciprocal interaction exists, such that the off-rate of glycine is influenced by the properties of the agonist occupying the glutamate coagonist site. Thus, the time constant for current decay after a brief exposure to glycine was fastest in the presence of a saturating concentration of cis-2,3-piperidinedicarboxylic acid (449 +/- 26 msec) and progressively slower in the presence of quinolinate (689 +/- 73 msec), NMDA (721 +/- 36 msec), and L-glutamate (1260 +/- 36 msec). The data suggested that the extent of the modulation of one site by the other is related to the intrinsic activity of the agonist, rather than its affinity. Specifically, we suggest that a partial agonist occupying one of the agonist recognition sites produces a conformational change that results in an accelerated off-rate for coagonist dissociation from the receptor; the lower the intrinsic activity, the greater is the effect on coagonist off-rate.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 46, Issue 6
1 Dec 1994
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-D-aspartic acid receptor complex.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-D-aspartic acid receptor complex.

T Priestley and J A Kemp
Molecular Pharmacology December 1, 1994, 46 (6) 1191-1196;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-D-aspartic acid receptor complex.

T Priestley and J A Kemp
Molecular Pharmacology December 1, 1994, 46 (6) 1191-1196;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics