Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters.

A Buckpitt, A M Chang, A Weir, L Van Winkle, X Duan, R Philpot and C Plopper
Molecular Pharmacology January 1995, 47 (1) 74-81;
A Buckpitt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A M Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Weir
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Van Winkle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X Duan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Philpot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Plopper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Parenteral administration of naphthalene produces a dose-dependent and tissue-, species-, and cell-selective lesion of murine Clara cells. The rate and stereoselectivity of naphthalene metabolism by microsomal preparations correlate with tissue and species differences in cytotoxicity. Because earlier studies used microsomes obtained from whole tissue, differences in susceptibility of proximal and distal airways could not be related to differences in the metabolic activation or detoxication of naphthalene. Specific subcompartments of the respiratory system, obtained by microdissection, have been used to study the cytochrome P450-dependent metabolism of naphthalene and the epoxide hydrolase/glutathione transferase-dependent metabolism of naphthalene oxide. The rates of naphthalene metabolism were substantially higher in mouse airways than in comparable airways of hamsters or rats. Rates of metabolism were higher in distal airways than in the trachea of all species studied. Metabolism in mouse airways was highly stereoselective, whereas that in hamster and rat tissues was not. Nonciliated cells at all airway levels in mice were heavily labeled with an antibody to cytochrome P450 2F2; little labeling was observed in any portion of rat and hamster lungs. Postmitochondrial supernatants prepared from mouse and hamster airways metabolized racemic naphthalene oxide to diol and glutathione adducts at substantially higher rates than did comparable preparations from rats. Although glutathione levels varied 2-4-fold at different airway levels in the three species studied, levels at the most susceptible site (mouse distal bronchioles) were as high as or higher than those at other, less susceptible, sites. These studies support the view that the rate and stereoselectivity of naphthalene metabolism to naphthalene 1R,2S-oxide catalyzed by cytochrome P450 2F2 are critical determinants in the species-specific and region-selective cytotoxicity of naphthalene in mice. The lack of major differences in the catalytic activity or enantioselectivity of putative detoxication enzymes (epoxide hydrolase or glutathione transferases) between mouse and hamster tissue, combined with data showing that the differences in the metabolic fate of naphthalene oxide in proximal versus distal airways are not dramatic, suggests that the initial epoxidation of naphthalene is an important factor in site-selective toxicity. These studies support the need to use tissue from defined airway levels for studies on the relationship of biochemical and metabolic factors important in cellular injury by lung toxicants, such as naphthalene, where there are dramatic regional differences in susceptibility to injury within the respiratory system.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 1
1 Jan 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters.

A Buckpitt, A M Chang, A Weir, L Van Winkle, X Duan, R Philpot and C Plopper
Molecular Pharmacology January 1, 1995, 47 (1) 74-81;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters.

A Buckpitt, A M Chang, A Weir, L Van Winkle, X Duan, R Philpot and C Plopper
Molecular Pharmacology January 1, 1995, 47 (1) 74-81;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics