Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases.

S K Debburman, P Kunapuli, J L Benovic and M M Hosey
Molecular Pharmacology February 1995, 47 (2) 224-233;
S K Debburman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Kunapuli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Benovic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M M Hosey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Agonist-dependent phosphorylation of G protein-coupled receptors (GPRs) by G protein-coupled receptor kinases (GRKs) is proposed to be a key event initiating homologous receptor desensitization. A technical limitation hindering identification of GPRs as GRK substrates has been the necessity to use purified and reconstituted receptors in GRK assays. Here, the human m2 and human m3 (hm3) muscarinic cholinergic receptors (mAChRs), which couple to attenuation of adenylyl cyclase and stimulation of phospholipase C, respectively, were expressed in Spodoptera frugiperda insect cells and an in vitro approach to studying GPR phosphorylation by GRKs in crude membranes was developed. The m2 mAChR, a known substrate of certain GRKs, was used to validate the approach. The GRK isoform beta-adrenergic receptor kinase (beta ARK)1 phosphorylated the membrane-bound human m2 mAChRs in an agonist-dependent manner. The results demonstrated that endogenous membrane-bound beta gamma subunits of G proteins stimulated the phosphorylation of the membrane-bound m2 mAChR. To reveal new GRK substrates, we tested the expressed hm3 mAChRs. The membrane-bound hm3 mAChRs were phosphorylated by beta ARK1 in an agonist-dependent, G beta gamma-enhanced manner. This is the first demonstration that hm3 mAChRs can serve as substrates for GRKs. The stoichiometry of receptor phosphorylation was approximately 2 mol of phosphate/mol of receptors in the absence of G beta gamma and approximately 4 mol of phosphate/mol of receptors upon addition of G beta gamma. When the specificity of various GRKs towards mAChRs was assessed, beta ARK2 phosphorylated the agonist-activated hm3 mAChRs as efficiently as did beta ARK1; however, neither GRK5 nor GRK6 significantly phosphorylated the hm3 mAChRs under similar conditions. The approach of studying GRK-mediated phosphorylation of GPRs in their membrane-bound state identified the hm3 mAChRs as new substrates for GRKs. This approach should be valuable in identifying other new substrates of GRKs and should aid in studies that elucidate GRK/GPR pairing.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 2
1 Feb 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases.

S K Debburman, P Kunapuli, J L Benovic and M M Hosey
Molecular Pharmacology February 1, 1995, 47 (2) 224-233;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases.

S K Debburman, P Kunapuli, J L Benovic and M M Hosey
Molecular Pharmacology February 1, 1995, 47 (2) 224-233;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics