Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes.

R P Xiao, X Ji and E G Lakatta
Molecular Pharmacology February 1995, 47 (2) 322-329;
R P Xiao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X Ji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E G Lakatta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recently we demonstrated that the effects of beta 2-adrenoceptor (AR) stimulation to augment Ca2+ current (ICa), cytosolic Ca2+ (Cai) transients, and contractility in rat ventricular myocytes are largely dissociated from its effect to increase cellular cAMP levels. This result suggested that beta 2ARs might be coupled to signaling pathways other than the Gs alpha-mediated activation of adenylyl cyclase. Here we show that pertussis toxin (PTX) pretreatment specifically potentiates the responses of rat heart cells to beta 2AR but not beta 1AR stimulation. After PTX pretreatment, 1) the dose-response curve for the effects of the beta 2AR agonist zinterol on contraction amplitude is shifted leftward and upward (EC50 changed from about 1.0 microM to 70 nM), 2) in indo-1-loaded cells, the maximal effects of zinterol (10(-5) M) on Cai transient and contraction amplitudes are additionally increased 1.7- and 2.0-fold, respectively, over those in control cells, and 3) the increase in ICa amplitude induced by the same zinterol concentration is potentiated by 2.5-fold. Similar effects of PTX are observed when beta 2ARs are stimulated by isoproterenol in the presence of a selective beta 1AR blocker, CGP 20712A. All effects of beta 2AR agonists in both PTX-treated and control cells are abolished by a selective beta 2AR blocker, ICI 118,551. In contrast, neither the base-line ICa, Cai transient, and contraction in the absence of beta AR stimulation nor the beta 1AR-mediated augmentations of these parameters are significantly altered by PTX treatment. These results demonstrate, for the first time, that the Gs-coupled beta 2AR can simultaneously activate a pathway that leads to functional inhibition in cardiac cells via a PTX-sensitive G protein. The activation of more than one G protein during beta 2AR stimulation, leading to functionally opposite effects, may provide a mechanism to protect the heart from Ca2+ overload and arrhythmias during the response to stress.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 2
1 Feb 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes.

R P Xiao, X Ji and E G Lakatta
Molecular Pharmacology February 1, 1995, 47 (2) 322-329;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes.

R P Xiao, X Ji and E G Lakatta
Molecular Pharmacology February 1, 1995, 47 (2) 322-329;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics