Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Comparison of fura-2 imaging and electrophysiological analysis of murine calcium channel alpha 1 subunits coexpressed with novel beta 2 subunit isoforms.

E Massa, K M Kelly, D I Yule, R L MacDonald and M D Uhler
Molecular Pharmacology April 1995, 47 (4) 707-716;
E Massa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K M Kelly
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D I Yule
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R L MacDonald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M D Uhler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A polymerase chain reaction product was used to isolate mouse brain cDNA clones coding for isoforms of the beta subunit of voltage-dependent Ca2+ channels. The two mouse brain beta 2 subunit cDNA clones described, beta 2a and beta 2b, differed by alternative splicing within the coding region but possessed a unique amino terminus not yet reported in other beta 2 subunit cDNAs. Northern blot and RNase protection analyses demonstrated that both mRNA isoforms could be detected in highest abundance in heart and brain and at lower levels in lung, kidney, and testis. In a novel assay for beta 2 subunit function, COS-1 cells were transfected with alpha 1 and beta 2 subunit expression vectors and assayed for increases in intracellular Ca2+ concentration by using fura-2 imaging. Co-transfection of COS-1 cells with the mouse brain class C-1 alpha 1 subunit expression vector and either of the beta 2 subunit expression vectors resulted in increases in intracellular Ca2+ concentration after stimulation with elevated K+ and the dihydropyridine agonist Bay K 8644. Transfection of either alpha 1 or beta 2 subunit expression vectors alone did not result in an elevation of intracellular Ca2+ concentration. Electrophysiological recording of human embryonic kidney 293 cells transfected with the expression vector for the alpha 1 subunit alone or with either beta 2 subunit demonstrated expression of voltage-dependent Ca2+ channels that were dihydropyridine sensitive. Currents formed by expression of only the alpha 1 subunit were small and slowly inactivated. In contrast, the currents formed by coexpression of alpha 1 subunits with either beta 2 subunit were larger and inactivated more rapidly. Dihydropyridine binding studies demonstrated that coexpression of alpha 1 subunits with beta 2 subunits increased the density of functional receptors, compared with expression of alpha 1 subunits alone. These experiments suggested that coexpression of the alpha 1 and beta 2 subunits produced functional dihydropyridine-sensitive Ca2+ channels and that both beta subunit isoforms had modulatory effects on these channels.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Comparison of fura-2 imaging and electrophysiological analysis of murine calcium channel alpha 1 subunits coexpressed with novel beta 2 subunit isoforms.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Comparison of fura-2 imaging and electrophysiological analysis of murine calcium channel alpha 1 subunits coexpressed with novel beta 2 subunit isoforms.

E Massa, K M Kelly, D I Yule, R L MacDonald and M D Uhler
Molecular Pharmacology April 1, 1995, 47 (4) 707-716;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Comparison of fura-2 imaging and electrophysiological analysis of murine calcium channel alpha 1 subunits coexpressed with novel beta 2 subunit isoforms.

E Massa, K M Kelly, D I Yule, R L MacDonald and M D Uhler
Molecular Pharmacology April 1, 1995, 47 (4) 707-716;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics