Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site.

D W Fry, M A Becker and R L Switzer
Molecular Pharmacology April 1995, 47 (4) 810-815;
D W Fry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Becker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R L Switzer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The kinetics of inhibition by the aminopyrimidopyrimidine nucleotide 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine[-5' -monophosphate (APP-MP) were assessed with two human isozymes of 5-phosphoribosyl-1-pyrophosphate synthetase (PRS) (PRS1 and PRS2) and a mutant enzyme, S.M. PRS1, derived from an individual with PRS hyperactivity. In the presence of 1 mM potassium phosphate, APP-MP inhibited PRS1 and PRS2 with half-maximal inhibition (IC50) at 5.2 microM and 23.8 microM, respectively. The degree of inhibition for both enzymes was highly dependent on the phosphate concentration; IC50 values were 70 times higher in the presence of 50 mM potassium phosphate. APP-MP exhibited mixed noncompetitive-uncompetitive inhibition against PRS1, with a Kii value of 6.1 microM and a Kis value of 14.6 microM, and produced parabolic secondary plots of slope or intercept versus APP-MP concentration. In comparison, inhibition of PRS1 by ADP was of a mixed noncompetitive-competitive type, with a Kii value of 9.6 microM and a Kis value of 2.8 microM. A similar kinetic analysis was completed using S.M. PRS1, a mutant enzyme with a single amino acid substitution resulting in diminished sensitivity to feedback inhibition by nucleotides. The noncompetitive component of ADP inhibition of PRS1 was absent with S.M. PRS1 and ADP inhibition was purely competitive, with a Ki of 6.4 microM, APP-MP was a very poor inhibitor of S.M. PRS1, displaying uncompetitive characteristics and a Ki of 1.6 mM. These data indicate that APP-MP inhibits PRS1 with a strong element of noncompetitive inhibition and appears to interact specifically at the allosteric site used by ADP. These results contrast with those obtained with ADP, which has a strong component of ATP competitive inhibition and binds at the ATP site as well as at a second, allosteric, site.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site.

D W Fry, M A Becker and R L Switzer
Molecular Pharmacology April 1, 1995, 47 (4) 810-815;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site.

D W Fry, M A Becker and R L Switzer
Molecular Pharmacology April 1, 1995, 47 (4) 810-815;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics