Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry.

S P Watson, A Poole and J Asselin
Molecular Pharmacology April 1995, 47 (4) 823-830;
S P Watson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Poole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Asselin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the present study, the roles of Ca2+ and fibrinogen receptor occupancy in the regulation of phospholipase C by G protein-coupled and tyrosine kinase-linked receptor pathways in human platelets have been investigated. Agonist stimulation of phospholipase C was not altered significantly in the absence of stirring or in the presence of the fibrinogen receptor antagonist arginine-glycine-aspartate-serine, conditions that prevent platelet aggregation. Similarly, elevation of intracellular Ca2+ levels by the ionophores A23187 or ionomycin did not induce formation of inositol phosphates. In contrast, chelation of extracellular Ca2+ by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) reduced formation of inositol phosphates by G protein receptor (thrombin)- and tyrosine kinase (Fc receptor and peroxovanadate)-regulated pathways. Similarly, short term exposure to Ni2+ ions, which also prevent Ca2+ entry, inhibited thrombin-stimulated formation of inositol phosphates. Loading of platelets with the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) markedly suppressed elevation of intracellular Ca2+ and formation of inositol phosphates in platelets stimulated by G protein receptor- and tyrosine kinase-regulated pathways. The greater inhibition of phospholipase C by BAPTA, relative to that induced by EGTA, is consistent with the more pronounced inhibition of intracellular Ca2+ elevation. The tyrphostin tyrosine kinase inhibitor ST271 also reduced intracellular Ca2+ levels and inhibited activation of phospholipase C. The degree of inhibition of phospholipase C by ST271 was slightly greater than that induced by EGTA but was not additive with the effect of EGTA, suggesting a common mode of action. It is concluded that elevation of intracellular Ca2+ regulates agonist-induced activation of phospholipase C and that this contributes to the inhibition of thrombin-induced formation of inositol phosphates by the tyrphostin ST271.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 4
1 Apr 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry.

S P Watson, A Poole and J Asselin
Molecular Pharmacology April 1, 1995, 47 (4) 823-830;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry.

S P Watson, A Poole and J Asselin
Molecular Pharmacology April 1, 1995, 47 (4) 823-830;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics