Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells.

E T Piros, P L Prather, H H Loh, P Y Law, C J Evans and T G Hales
Molecular Pharmacology May 1995, 47 (5) 1041-1049;
E T Piros
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P L Prather
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H H Loh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Y Law
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Evans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T G Hales
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Members of the three classes of opioid receptors (mu, delta, and kappa) have been cloned and characterized in unexcitable cell lines using biochemical techniques. However, an important function of these cloned receptors, their coupling to voltage-activated Ca2+ channels, remains untested. We stably transfected cloned rat mu-opioid receptor cDNAs into clonal pituitary GH3 cells. GH3 cells expressing mu-opioid receptors (GH3MOR cells) bound the receptor-specific ligands [D-Ala2,Me-Phe4,Gly-ol5]-enkephalin (DAMGO) and morphine with high affinity (Ki = 1.0 and 7.2 nM, respectively), and these ligands also potently inhibited adenylyl cyclase activity (IC50 = 21.9 and 55.2 nM, respectively). Functional coupling of mu-opioid receptors to voltage-activated Ca2+ channels was compared with that of endogenous somatostatin (SRIF) receptors in GH3MOR cells, using the patch-clamp technique, with Ba2+ as the charge carrier. DAMGO (1 microM) and SRIF (1 microM) inhibited Ba2+ currents by 23.8 +/- 1.0% and 22.9 +/- 2.5%, respectively. DAMGO (0.1 nM to 10 microM) dose-dependently inhibited Ba2+ currents, with an IC50 of 105 nM. The mu-opioid receptor agonist morphine (1 microM) inhibited currents by 13.5 +/- 1.1% and the delta-opioid receptor-selective ligand [D-Pen2,5]-enkephalin (1 microM) caused only 3.5 +/- 2.1% inhibition. The inhibitory actions of DAMGO, morphine, and [D-Pen2,5]-enkephalin were reversed by naloxone. Ba2+ current inhibitions by DAMGO and SRIF were attenuated by pertussis toxin pretreatment. Nimodipine reduced the amplitude of Ba2+ current inhibition by DAMGO, suggesting that mu-opioid receptors couple to L-type Ca2+ channels in GH3MOR cells.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 47, Issue 5
1 May 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells.

E T Piros, P L Prather, H H Loh, P Y Law, C J Evans and T G Hales
Molecular Pharmacology May 1, 1995, 47 (5) 1041-1049;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells.

E T Piros, P L Prather, H H Loh, P Y Law, C J Evans and T G Hales
Molecular Pharmacology May 1, 1995, 47 (5) 1041-1049;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics