Abstract
The formation of 5-lipoxygenase (EC 1.13.11.34) products from endogenous substrate by intact rat neutrophilic granulocytes and from exogenous arachidonic acid by rat granulocyte 105,000 x g supernatants and affinity chromatography-purified human leukocyte 5-lipoxygenase was inhibited by acetyl-11-keto-beta-boswellic acid (IC50 values of 1.5 microM, 8 microM, and 16 microM, respectively). With other pentacyclic triterpenes lacking the 11-keto function and/or the carboxyl function on ring A (e.g., amyrin and ursolic acid), no 5-lipoxygenase inhibition was observed. The presence of the noninhibitory pentacyclic triterpenes both in intact cells and in the cell-free system caused a concentration-dependent reversal of the 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid, whereas the inhibitory actions of 5-lipoxygenase inhibitors from different chemical classes (MK-886, L-739,010, ZM-230,487, and nordihydroguaiaretic acid) were not modified. The inhibition by acetyl-11-keto-beta-boswellic acid and the antagonism by noninhibitory pentacyclic triterpenes were not due to nonspecific lipophilic interactions, because lipophilic four-ring compounds (cholesterol, cortisone, and testosterone) neither inhibited the activity of the 5-lipoxygenase nor antagonized the inhibitory action of acetyl-11-keto-beta-boswellic acid. Therefore, we conclude that acetyl-11-keto-beta-boswellic acid acts directly on the 5-lipoxygenase enzyme at a selective site for pentacyclic triterpenes that is different from the arachidonate substrate binding site.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|