Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

alpha-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors.

D R Groebe, J M Dumm, E S Levitan and S N Abramson
Molecular Pharmacology July 1995, 48 (1) 105-111;
D R Groebe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Dumm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E S Levitan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S N Abramson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Muscle subtypes of the nicotinic acetylcholine receptor contain two acetylcholine binding sites that can be distinguished pharmacologically. The affinities of several alpha-conotoxins for the two acetylcholine binding sites on nicotinic receptors from BC3H1 cells and Torpedo electric organ were investigated. alpha-Conotoxins MI, GI, and SIA each inhibited the binding of 125I-alpha-bungarotoxin to nicotinic acetylcholine receptors on BC3H1 cells with two distinct and independent affinities, which differed by > 10,000-fold. The affinities of alpha-conotoxins SI and SII were significantly lower and the differences in the affinities of each of these toxins for the two sites were < 400-fold. alpha-Conotoxins MI, GI, SIA, and SI had higher affinity for the acetylcholine binding site near the alpha/delta subunit interface of nicotinic receptors from BC3H1 cells. However, when assessed using nicotinic receptors from Torpedo electric organ, alpha-conotoxin MI displayed higher affinity for the acetylcholine binding site near the alpha/gamma subunit interface. These observations suggest that species variations in the sequences of the gamma and delta subunits resulted in a dramatic reversal of the relative affinities of the alpha-conotoxins for each acetylcholine binding site. Some of the practical implications of these observations are discussed.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 48, Issue 1
1 Jul 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
alpha-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

alpha-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors.

D R Groebe, J M Dumm, E S Levitan and S N Abramson
Molecular Pharmacology July 1, 1995, 48 (1) 105-111;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

alpha-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors.

D R Groebe, J M Dumm, E S Levitan and S N Abramson
Molecular Pharmacology July 1, 1995, 48 (1) 105-111;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics