Abstract
With chronic opiate use, opioid receptor desensitization may be one of the important mechanisms underlying the development of opiate tolerance and addiction. Opioid receptors belong to the G protein-coupled receptor superfamily. In this study, the mouse delta-opioid receptor (delta OR) was used in a model system to investigate the role of opioid receptor phosphorylation in receptor desensitization. When expressed in 293 cells and exposed to agonist, the delta OR underwent receptor-specific desensitization within 10 min. This agonist-induced desensitization corresponded temporally to a 3-fold increase in receptor phosphorylation. Phorbol ester, but not forskolin, also stimulated phosphorylation of the delta OR in 293 cells. Although down-regulation of protein kinase C failed to affect agonist-induced receptor phosphorylation, it abolished phorbol ester-induced receptor phosphorylation. Agonist-induced delta OR phosphorylation must therefore involve kinases other than protein kinase C. Whereas overexpression of a dominant negative mutant (K220R) of beta-adrenergic receptor kinase-1 (beta ARK1) in 293 cells significantly reduced agonist-dependent phosphorylation of the delta OR, overexpression of beta ARK1 or G protein-coupled receptor kinase-5 significantly enhanced this phosphorylation. Concordantly, beta ARK1-K220R overexpression reduced agonist-dependent delta OR desensitization, whereas beta ARK1 overexpression enhanced this densensitization. We conclude that short term desensitization of the delta OR involves phosphorylation of the receptor by one or more G protein-coupled receptor kinases.