Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

A discrete site for general anesthetics on a postsynaptic receptor.

S A Forman, K W Miller and G Yellen
Molecular Pharmacology October 1995, 48 (4) 574-581;
S A Forman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K W Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Yellen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

General anesthetics depress central nervous system excitability via a mechanism that probably involves effects on synaptic ion channels, but the fundamental molecular nature of the site where they act is unknown. Although the importance of hydrophobicity for general anesthetic drug potency has long been established, it remains uncertain whether these "nonspecific" drugs act on membrane proteins directly or by modification of the physical properties of the lipid membrane or the lipid-protein interface. We find that specific mutations in the acetylcholine receptor pore-forming M2 domains enhance the sensitivity of the receptor to the general anesthetics isoflurane, hexanol, and octanol, suggesting that these agents act by binding directly to a discrete protein site at or near these residues. The sensitivity of the receptor to block by general anesthetics increases with increased hydrophobicity of these residues, demonstrating that hydrophobic forces dominate the interaction of drugs with their protein site. Furthermore, octanol inhibits both wild-type and mutant nicotinic acetylcholine receptors preferentially after channel opening, which is consistent with a mechanism where drugs bind within the receptor's pore. Similar sites on postsynaptic ion channels in brain may represent general anesthetic targets for modulating consciousness.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 48, Issue 4
1 Oct 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A discrete site for general anesthetics on a postsynaptic receptor.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

A discrete site for general anesthetics on a postsynaptic receptor.

S A Forman, K W Miller and G Yellen
Molecular Pharmacology October 1, 1995, 48 (4) 574-581;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

A discrete site for general anesthetics on a postsynaptic receptor.

S A Forman, K W Miller and G Yellen
Molecular Pharmacology October 1, 1995, 48 (4) 574-581;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics