Abstract
Prostaglandin E2 produces a transient increase in the intracellular concentration of cAMP in a human promonocytic cell line (U937). The temporal pattern consists of a rapid increase followed by a gradual decline to a new steady state. The decline phase coincides with an increase in the activity of a high affinity form of cAMP phosphodiesterase (PDE). Immunoprecipitation with specific antibodies revealed that the activated enzyme is a variant of PDE-4D. To confirm this observation, three isoforms of human PDE-4 (A, B, and D) were cloned and expressed in Sf9 cells with recombinant baculovirus infection. The activity of only one of the isoforms (PDE-4D3) increased after incubation with the catalytic subunit of protein kinase A and Mg-ATP. Hydrolytic activity of human PDE-4D3 was dependent on Mg2+. Before phosphorylation, the concentration-response curve for Mg2+ was biphasic and ranged from 0.1 to 100 mM. Phosphorylation of PDE-4D3 by protein kinase A produced a monophasic Mg2+ response curve (0.5 Vmax = 0.2 mM). Phosphorylation of PDE-4D3 increased the sensitivity of the enzyme to inhibition by RS-25344 (approximately 100-fold) and RS-33793 (approximately 330-fold). Thus, phosphorylation of PDE-4D3 induces an apparent conformation change that increases maximum velocity and sensitivity to inhibition by some analogues of nitraquazone. These observations provide the basis for a novel pharmacological strategy that targets an activated form of PDE in human leukocytes. Selective PDE-4D3 inhibitors may have useful anti-inflammatory properties with fewer adverse side effects than other PDE-4 inhibitors.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|