Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate.

D J Waxman, P A Ram, N A Pampori and B H Shapiro
Molecular Pharmacology November 1995, 48 (5) 790-797;
D J Waxman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P A Ram
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N A Pampori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B H Shapiro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Growth hormone (GH) secretory patterns regulate the expression of several sex-dependent liver cytochrome P450 (CYP) genes. Studies using the hypophysectomized rat model have established that the intermittent plasma GH secretory pattern associated with adult male rats markedly stimulates liver expression of the male-specific CYP 2C11, a testosterone 2 alpha- and 16 alpha-hydroxylase, but is not required for expression of other male-specific liver enzymes, including CYP 2A2, a testosterone 15 alpha-hydroxylase, and CYP 3A2, a testosterone 6 beta-hydroxylase. In the present study, the effects of intermittent GH treatment on liver CYP expression were studied in adult rats rendered GH deficient by neonatal administration of monosodium glutamate (MSG), which depletes circulating adult GH without the global loss of other pituitary-dependent hormones that is associated with hypophysectomy. Restoration of the normal masculine circulating GH profile of six daily pulses (180-225 ng GH/ml/peak) in MSG-treated male rats by the use of an external pumping apparatus led to a substantial (30-50%) restoration of normal male levels of CYP 2A2 and CYP 3A2 activity, protein, and mRNA. GH pulsation at the nonphysiological frequencies of two or four times per day was less effective unless given at a dose that resulted in supraphysiological plasma GH levels. Although intermittent GH treatment can induce male-specific P450 expression in hypophysectomized female rats, the same hormone treatment did not stimulate CYP 2A2 or CYP 3A2 expression in MSG-treated female rats. Liver GH receptor mRNA levels at adulthood were not significantly altered by neonatal MSG treatment, suggesting that the unresponsiveness of MSG-treated females and the previously reported low responsiveness of MSG-treated males to GH-induced CYP 2C11 expression are not due to the absence of GH receptor. Moreover, normal liver IGF-1 mRNA levels were expressed in the MSG-treated female rats, suggesting that the liver GH receptor is functional in these animals. The present findings establish that the adult male-specific enzymes CYP 2A2 and CYP 3A2 can be positively regulated by intermittent GH pulsation despite their GH-independent expression in hypophysectomized rats. Moreover, neonatal MSG treatment, particularly in female rats, may lead to the loss of factors other than GH that are required for full expression of the pulsatile GH-stimulated CYP 2A2, 3A2, and 2C11 genes.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 48, Issue 5
1 Nov 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate.

D J Waxman, P A Ram, N A Pampori and B H Shapiro
Molecular Pharmacology November 1, 1995, 48 (5) 790-797;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glutamate.

D J Waxman, P A Ram, N A Pampori and B H Shapiro
Molecular Pharmacology November 1, 1995, 48 (5) 790-797;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics