Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells.

J D Schuetz, E G Schuetz, J V Thottassery, P S Guzelian, S Strom and D Sun
Molecular Pharmacology January 1996, 49 (1) 63-72;
J D Schuetz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E G Schuetz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J V Thottassery
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P S Guzelian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Strom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Sun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The human liver cytochromes P450 3A (CYP3As), orthologous to the rat glucocorticoid inducible forms, are composed of at least four differentially expressed members. To begin the study of the molecular events in the glucocorticoid regulation of CYP3A5, we fused 5' sequences of CYP3A5 to the chloramphenicol acetyltransferase gene in a vector that contains the herpes simplex virus thymidine kinase promoter. In HepG2 cells, the largest 5' CYP3A5 gene fragment (1.4 kb) suppressed the TK promoter. However, suppression was overcome by addition of 10 microM dexamethasone. A series of unidirectional deletions revealed a unique 219-bp fragment (-891 to -1109 bp upstream from the transcriptional start site) that conferred dexamethasone responsiveness on the TK promoter regardless of either the distance or orientation from the promoter and thus appears to be an enhancer. Nucleotide sequence analysis of this CYP3A5 enhancer revealed no consensus 15-bp glucocorticoid responsive element (GRE) (GGTACANNNTGTTCT); however, two GRE "half-sites" (TGTTCT) were found separated by 160 bp. Although dexamethasone stimulated the CYP3A5 enhancer only 3-4-fold in HepG2 cells, the CYP3A5 enhancer was stimulated 7- and 12-fold in immortalized primary human hepatocytes and primary rat hepatocyte cultures, respectively. The glucocorticoid receptor (GCR) seems to be indispensable to this process because 1) dexamethasone induction can be blocked by the antiglucocorticoid RU-486, 2) dexamethasone-dependent transcriptional activation of the CYP3A5 enhancer in HepG2 cells required cotransfection of an expression vector containing the intact GCR, yet 3) cotransfection with a plasmid that contains a mutation in the ligand binding domain of the GCR does not activate the CYP3A5 enhancer in the presence of dexamethasone. To further localize the dexamethasone responsive region of the 219-bp CYP3A5 enhancer, it was subdivided and fused to the TKCAT expression vector. Transfection analysis in HepG2 cells demonstrated that neither GRE half-site can independently confer dexamethasone responsiveness on the TK promoter. Block mutations of either of the two GRE half-sites or point mutations at specific GCR binding sites eliminates dexamethasone inducibility, demonstrating the half-sites need to interact. Electromobility shift assays indicate that the CYP3A5 5'-GRE half-site 1) specifically binds purified GCR, 2) can displace binding of the GCR to a consensus GRE, and 3) shifts a protein in HepG2 nuclear extracts that is supershifted by GCR antibody, demonstrating that this enhancer is an authentic GRE. This is the first study to demonstrate that a member of the human CYP3A gene family contains an enhancer that binds the GCR and that this binding is critical to transcriptional activation by dexamethasone.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 1
1 Jan 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells.

J D Schuetz, E G Schuetz, J V Thottassery, P S Guzelian, S Strom and D Sun
Molecular Pharmacology January 1, 1996, 49 (1) 63-72;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells.

J D Schuetz, E G Schuetz, J V Thottassery, P S Guzelian, S Strom and D Sun
Molecular Pharmacology January 1, 1996, 49 (1) 63-72;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics