Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes.

S P Carpenter, J M Lasker and J L Raucy
Molecular Pharmacology February 1996, 49 (2) 260-268;
S P Carpenter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Lasker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Raucy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The mechanisms responsible for ethanol-mediated teratogenesis have not been resolved. However, possible etiologies include the local formation of the teratogen acetaldehyde or oxygen radicals by fetal ethanol-oxidizing enzymes. As alcohol dehydrogenases are expressed at very low concentrations in human embryonic tissues, the ethanol-inducible P450 enzyme, CYP2E1, could be the sole catalyst of fetal ethanol oxidation. With this in mind, we examined the expression of this P450 in liver samples from fetuses ranging in gestational age from 16 to 24 weeks. Immunoblot analysis of fetal liver microsomes revealed the presence of a protein immunoreactive with CYP2E1 antibodies that exhibited a slightly lower molecular weight than that found in adult liver samples. Embryonic CYP2E1 expression was further confirmed by the reverse transcriptase reaction with RNA from a 19-week gestational fetal liver used as template. Catalytic capabilities of human fetal microsomes were assessed by measurement of the rate of ethanol oxidation to acetaldehyde, which were 12-27% of those exhibited by adult liver microsomes. Immunoinhibition studies with CYP2E1 antibodies revealed that the corresponding antigen was the major catalyst of this reaction in both fetal and adult tissues. We then assessed whether embryonic CYP2E1 was, like the adult enzyme, inducible by xenobiotics. Treatment of primary fetal hepatocyte cultures with either ethanol or clofibrate demonstrated a 2-fold increase in CYP2E1 levels compared with untreated cells. Collectively, our results indicate that CYP2E1 is present in human fetal liver, that the enzyme is functionally similar to CYP2E1 from adults, and that fetal hepatocyte CYP2E1 is inducible in culture by xenobiotics, including ethanol. Because fetal CYP2E1 mediates ethanol metabolism, the enzyme may play a pivotal role in the local production of acetaldehyde and free radicals, both of which have potential deleterious effects on the developing fetus.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 2
1 Feb 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes.

S P Carpenter, J M Lasker and J L Raucy
Molecular Pharmacology February 1, 1996, 49 (2) 260-268;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Expression, induction, and catalytic activity of the ethanol-inducible cytochrome P450 (CYP2E1) in human fetal liver and hepatocytes.

S P Carpenter, J M Lasker and J L Raucy
Molecular Pharmacology February 1, 1996, 49 (2) 260-268;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics