Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.

Y Li, P Kuppusamy, J L Zweier and M A Trush
Molecular Pharmacology March 1996, 49 (3) 404-411;
Y Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Kuppusamy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Zweier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Trush
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cu/Zn-superoxide dismutase (Cu/Zn-SOD) has been shown to modulate the autoxidation of a variety of phenoic compounds, including 1,4-hydroquinone (HQ), a benzene-derived metabolite. The acceleration of autoxidation of HQ by Cu/Zn-SOD results in the production of 1,4-benzoquinone (BQ). It has been proposed that the chemical mechanism involved in the Cu/Zn-SOD-catalyzed autoxidation of HQ may be occur through either its conventional activity as a superoxide:superoxide oxidoreductase or as a semiquinone:superoxide oxidoreductase. However, Cu/Zn-SOD-accelerated oxidation of HQ has not been resolved experimentally. In this study, with ESR spectroscopy we investigated further the chemical reactions involved in the SOD-accelerated oxidation of HQ. In phosphate-buffered saline (PSB), HQ underwent a slow autoxidation to BQ, which was accelerated by Cu/Zn-SOD, Mn-SOD, or Fe-SOD with similar efficiency. In contrast, among free metals, only Cu(II) strongly mediated the oxidation of HQ to BQ. Mn(II) exhibited a slight capacity to oxidize HQ, whereas neither FE(II) nor FE(III) was capable of modulating the autoxidation of HG. The presence of either form of SOD also dramatically enhanced the formation of semiquinone anion radicals SQ-. from HQ. The SOD-accelerated oxidation of HQ was also accompanied by the generation of H202. In PBS containing bovine serum albumin (BSA) (PBS/BSA), HQ did not undergo autoxidation to SQ-., and as such the presence of SOD was unable to induce the formation of either SQ-. or BQ or the consumption of O2. The addition of 10 microM BQ to HQ (100 or 1000 microM) in PBS/BSA resulted in the formation of SQ-. and initiated a slow rate of oxidation of HQ to BQ. In this case, the presence of Cu/Zn-SOD strongly accelerated the oxidation of HQ to SQ-. and BQ and the utilization of O2. Furthermore, the enhancement by Cu/Zn-SOD of the generation of SQ-. or BQ from HQ in PBS/BSA was extensively inhibited under anaerobic conditions. The enhancement of SQ-. generation from HQ by all three forms of SOD does not support the possibility that Cu/Zn-SOD can oxidize SQ-. to BQ. Taken together, this study demonstrates that unlike free copper, Cu/Zn-SOD does not directly interact with HQ to cause its oxidation to BQ. Rather, the autoxidation of HQ to SQ-. is a prerequisite for the enhancing capacity of Cu/Zn-SOD, and the dismutation of superoxide anion radicals generated from the SQ-. in the presence of O2 appears to be the underlying mechanism responsible for the enhancement by Cu/Zn-SOD of the oxidation of HQ.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 3
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.

Y Li, P Kuppusamy, J L Zweier and M A Trush
Molecular Pharmacology March 1, 1996, 49 (3) 404-411;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.

Y Li, P Kuppusamy, J L Zweier and M A Trush
Molecular Pharmacology March 1, 1996, 49 (3) 404-411;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics