Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors.

A M Garland, E F Grady, M Lovett, S R Vigna, M M Frucht, J E Krause and N W Bunnett
Molecular Pharmacology March 1996, 49 (3) 438-446;
A M Garland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E F Grady
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Lovett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S R Vigna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M M Frucht
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Krause
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N W Bunnett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We compared the desensitization of neurokinin1 and neurokinin2 (NK1 and NK2) receptors expressed in Chinese hamster ovary cells to substance P and neurokinin A, respectively. Substance P and neurokinin A stimulated a rapid increase in intracellular Ca2+ concentration ([Ca2+]i) for both receptors, which was due to release of Ca2+ from intracellular stores. This was followed by a plateau in [Ca2+]i, which was due to influx of extracellular Ca2+, and was more sustained for the NK2 receptor. When Ca2+ was present in the extracellular solution, the Ca2+ response of the NK1 receptor, but not the NK2 receptor, rapidly desensitized and slowly resensitized to two exposures to agonist. In contrast, the [Ca2+]i response, measured in Ca2+-free solution, and inositol triphosphate generation desensitized and resensitized similarly for the NK1 and NK2 receptors. Thus, differences in desensitization between the NK1 receptor and the NK2 receptor may be related to differences in entry of extracellular Ca2+. We compared endocytosis of the NK1 and NK2 receptors to determine whether disparities could account for differences in desensitization. Fluorescent and radiolabeled substance P and neurokinin A were internalized similarly by cells expressing NK1 and NK2 receptors. Thus, disparities in internalization cannot account for differences in desensitization. We used inhibitors to examine the contribution of endocytosis, recycling, and phosphatases to desensitization and resensitization of the NK1 receptor. Desensitization did not require endocytosis. However, resensitization required endocytosis, recycling, and phosphatase activity. This suggests that the NK1 receptor desensitizes by phosphorylation and resensitizes by dephosphorylation in endosomes and recycling.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 3
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors.

A M Garland, E F Grady, M Lovett, S R Vigna, M M Frucht, J E Krause and N W Bunnett
Molecular Pharmacology March 1, 1996, 49 (3) 438-446;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors.

A M Garland, E F Grady, M Lovett, S R Vigna, M M Frucht, J E Krause and N W Bunnett
Molecular Pharmacology March 1, 1996, 49 (3) 438-446;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics