Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.

L Rossi, I De Angelis, J Z Pedersen, E Marchese, A Stammati, G Rotilio and F Zucco
Molecular Pharmacology March 1996, 49 (3) 547-555;
L Rossi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I De Angelis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Z Pedersen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Marchese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Stammati
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Rotilio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Zucco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pathways participating in the metabolism of the nitrofuran antimicrobial drug N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone (furazolidone) in intact cells were investigated in the human intestinal cell line Caco-2. One-electron reduction of furazolidone led to the formation of a free radical intermediate that could be monitored in dense cell suspensions by noninvasive electron spin resonance spectroscopy. The effects of enzyme inhibitors on the kinetics of radical production and decay were used to estimate the relative contribution of different enzymes to the reductive activation of the drug. Although many enzymes are known to reduce nitrofurans in vitro (e.g., xanthine oxidase, aldehyde oxidase, DT-diaphorase, mitochondrial redox chain components), their contributions were insignificant in living Caco-2 cells. The first reducing equivalent required for the formation of the nitroanion derivative of furazolidone appeared to be provided essentially by the microsomal cytochrome P450 reductase. This was confirmed through studies of the NADPH-dependent radical formation by microsomes. Differentiated Caco-2 cells, an established enterocyte model, showed only modestly increased radical formation and the same enzyme-specificity pattern as undifferentiated cells. Consistently, only a small increase in P450 reductase activity was found in differentiated cells, in contrast to the 10-fold increase seen in typical differentiation marker enzymes. With the electron spin resonance method that we describe, it is possible to distinguish between sites of bioactivation of redox active drugs in intact cells.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 3
1 Mar 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.

L Rossi, I De Angelis, J Z Pedersen, E Marchese, A Stammati, G Rotilio and F Zucco
Molecular Pharmacology March 1, 1996, 49 (3) 547-555;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.

L Rossi, I De Angelis, J Z Pedersen, E Marchese, A Stammati, G Rotilio and F Zucco
Molecular Pharmacology March 1, 1996, 49 (3) 547-555;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics