Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Beta-Adrenoceptor-medicated down-regulation of M2 muscarinic receptors: role of cyclic adenosine 5'-monophosphate-dependent protein kinase and protein kinase C.

J Rousell, E B Haddad, J C Mak, B L Webb, M A Giembycz and P J Barnes
Molecular Pharmacology April 1996, 49 (4) 629-635;
J Rousell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E B Haddad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Mak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B L Webb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Giembycz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P J Barnes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Stimulation of beta2-adrenoceptors with the selective beta2 agonist procaterol caused a biphasic decrease in cell surface M2 muscarinic receptor number in human embryonic lung 299 cells when measured with the hydrophilic antagonist [3H]N-methylscopolamine. In contrast, total muscarinic receptor number, measured with the lipophilic antagonist [3H]quinuclidinylbenzilate, decreased after only 24-hr treatments with procaterol. The loss in receptor number at 24 hr was mimicked with the use of forskolin and the cAMP analogue 8-bromo-cAMP, indicating a cAMP-mediated mechanism. Northern blot analysis showed a small and transient increase in m2-receptor mRNA levels up to 2 hr but no long term (24 hr) effect. Chronic (24 hr) treatment with 8-bromo-cAMP also had no effect on m2 muscarinic receptor mRNA, whereas forskolin caused a 50% reduction in the steady state levels of m2 mRNA that could be only partially blocked by the cAMP-dependent protein kinase inhibitor H-8 and the protein kinase C inhibitor GF 109203X. Procaterol-induced down-regulation of M2 receptors was fully blocked by N-[2-(methylamino)ethyl]-5'-isoquinoline-sulfonamide and 2-[1-(3-dimethylaminopropyl)-inol-3-yl]-3-(indol-3-yl)maleimide, implicating both of these kinases in the M2 muscarinic receptor down-regulation. Conversely, the forskolin- and 8-bromo-cAMP-induced down-regulation was only partially inhibited and unaffected by these inhibitors, respectively. In control cells and those treated with procaterol for < / = 2 hr, cAMP generation was significantly inhibited by carbachol. The inhibitory effect of carbachol was, however, lost after 24-hr exposure to procaterol. This desensitization was partially reversed by preincubations with H-8 and GF 109203X. Collectively, these results suggest that transregulation of M2 muscarinic receptors by beta2-adrenoceptor stimulation can be demonstrated at the protein level in human embryonic lung 299 cells. Furthermore, a role is suggested for cAMP-dependent kinase and PKC in M2 muscarinic receptor down-regulation and their functional desensitization.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 4
1 Apr 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Beta-Adrenoceptor-medicated down-regulation of M2 muscarinic receptors: role of cyclic adenosine 5'-monophosphate-dependent protein kinase and protein kinase C.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Beta-Adrenoceptor-medicated down-regulation of M2 muscarinic receptors: role of cyclic adenosine 5'-monophosphate-dependent protein kinase and protein kinase C.

J Rousell, E B Haddad, J C Mak, B L Webb, M A Giembycz and P J Barnes
Molecular Pharmacology April 1, 1996, 49 (4) 629-635;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Beta-Adrenoceptor-medicated down-regulation of M2 muscarinic receptors: role of cyclic adenosine 5'-monophosphate-dependent protein kinase and protein kinase C.

J Rousell, E B Haddad, J C Mak, B L Webb, M A Giembycz and P J Barnes
Molecular Pharmacology April 1, 1996, 49 (4) 629-635;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics