Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells.

D W Pyatt, W S Stillman and R D Irons
Molecular Pharmacology June 1996, 49 (6) 1097-1103;
D W Pyatt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W S Stillman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R D Irons
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Reactive oxygen species (ROS) have been shown to stimulate proliferation and growth responses in a variety of mammalian cell types and to act as important mediators in many cellular processes, including hematolymphopoiesis. We examined the effect on primitive murine hematopoietic progenitor cells (HPC) of ROS generated by xanthine plus xanthine oxidase (xanthine/XO) and various antioxidants. Pretreatment of murine HPC (C57BL/6) with xanthine/XO produced a dose-dependent enhancement of clonogenic response to granulocyte/macrophage colony-stimulating factor (GM-CSF) but not to interleukin-3 or granulocyte colony-stimulating factor. Stem cell factor (SCF), a potent comitogen for many hematopoietic growth factors, also synergized with GM-CSF. However, the synergistic enhancement of GM-CSF with xanthine/XO and SCF was not additive, indicating that xanthine/XO and SCF may target the same subpopulation of HPC. Support for this conclusion came from experiments demonstrating that 1) mutant mice strains constitutively lacking a SCF-responsive population of HPC [White spotted (W/WV) and Steel (SI/SId)] are unresponsive to xanthine/XO- and SCF-induced enhancement of GM-CSF and 2) 3,4-epoxybutene, which selectively abrogates SCF synergy with GM-CSF, inhibits xanthine/XO-induced enhancement. As xanthine/XO can mimic SCF in this population of HPC, the possibility exists that ROS also play a role in normal SCF-mediated proliferation of these cells. To test this hypothesis, we used the antioxidants N-tert-butyl-alpha-phenylnitrone, exogenous superoxide dismutase, and catalase. Both N-tert-butyl-alpha-phenylnitrone and superoxide dismutase effectively inhibited SCF and xanthine/XO synergism with GM-CSF, whereas catalase had no effect, indicating that the superoxide anion may be involved. Also, none of these compounds affected SCF synergism with other hematopoietic growth factors, such as interleukin-3 or granulocyte colony-stimulating factor, suggesting a population-specific phenomenon. These findings indicate that xanthine/XO mimics SCF in stimulating a subpopulation of murine HPC to proliferate and that SCF synergy with GM-CSF in this population is sensitive to antioxidant inhibition.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 6
1 Jun 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells.

D W Pyatt, W S Stillman and R D Irons
Molecular Pharmacology June 1, 1996, 49 (6) 1097-1103;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells.

D W Pyatt, W S Stillman and R D Irons
Molecular Pharmacology June 1, 1996, 49 (6) 1097-1103;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics