Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450.

X Ding, D C Spink, J K Bhama, J J Sheng, A D Vaz and M J Coon
Molecular Pharmacology June 1996, 49 (6) 1113-1121;
X Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C Spink
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J K Bhama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J J Sheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A D Vaz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M J Coon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The herbicide 2,6-dichlorobenzonitrile (DCBN) is known to cause tissue-specific toxicity at very low doses in the olfactory mucosa of rodents. The toxicity of DCBN is reportedly cytochrome P450 (P450) dependent, but the isoforms involved have not been identified, and the effects of this agent on humans are not known. In the present study, DCBN metabolism was examined with microsomes and with purified P450s in a reconstituted system. Rat and rabbit olfactory microsomes act on DCBN to form DCBN-protein adducts as well as two metabolite peaks, designated M1 and M2, identified through high performance liquid chromatography with radiometric detection. The activity of rat olfactory microsomes in DCBN metabolism is much higher than that of liver or lung microsomes. Of seven purified rabbit P450s known to be expressed in the olfactory mucosa, including 1A2, 2A10/11, 2B4, 2E1, 2G1, and 3A6, the 2A10/11 preparation is the most active, producing M2 as well as DCBN-protein adducts; P450 2E1 is the only other active isoform. The addition of purified epoxide hydrolase (EC 4.2.1.63) to the reconstituted enzyme system leads to the formation of M1 and decreased formation of M2. It seems that M1 and M2 are derived from an epoxide intermediate that also forms covalent protein adducts. Gas chromatography- and liquid chromatography-mass spectrometry analyses of nasal microsomal DCBN metabolites and DCBN-glutathione conjugates indicated that the major reactive intermediate may be 2,3-oxo-DCBN and that M1 may be 2,3-dihydroxy-6-chlorobenzonitrile, whereas M2 may correspond to a monohydroxy-DCBN. Interestingly, heterologously expressed human P450s 2A6 and 2E1, but not 1A2, are active in the metabolism of DCBN, forming protein adducts as well as M2. Thus, the preferential expression of P450s of the 2A subfamily in olfactory tissue suggests a molecular basis for the tissue-specific toxicity of the herbicide and may have important implications for risk assessment in humans.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 6
1 Jun 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450.

X Ding, D C Spink, J K Bhama, J J Sheng, A D Vaz and M J Coon
Molecular Pharmacology June 1, 1996, 49 (6) 1113-1121;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450.

X Ding, D C Spink, J K Bhama, J J Sheng, A D Vaz and M J Coon
Molecular Pharmacology June 1, 1996, 49 (6) 1113-1121;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics