Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

High affinity open channel block by dofetilide of HERG expressed in a human cell line.

D J Snyders and A Chaudhary
Molecular Pharmacology June 1996, 49 (6) 949-955;
D J Snyders
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Chaudhary
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the long QT syndrome, excessive prolongation of the cardiac action potential leads to polymorphic ventricular tachycardia (torsades de pointes) and sudden death. Mutations in HERG have been identified as one of the causes of the chromosome 7-linked form of congenital long QT syndrome. The biophysical properties of currents recorded from HERG expressing Xenopus oocytes are similar to those of a cardiac K+ current, I(Kr), but the characteristic nanomolar methanesulfonanilide sensitivity has not been demonstrated. To determine the biophysical and pharmacological properties of HERG under experimental conditions similar to those used to study native cardiac currents, we examined currents expressed after expression of HERG in a human cell line, human embryonic kidney 293. Transfected cells display K+-selective outward currents that activated at membrane potentials positive to -50 mV with strongly voltage-dependent kinetics [time constant (tau) = 2 sec at -20 mV and 188 msec at +20 mV]. Marked inward rectification was observed for depolarizations positive to +0 mV, which was due to rapid channel inactivation (tau = 6 msec at +50 mV). The subsequent tail currents at -40 mV displayed an initial rising phase with tau = 10 msec, followed by a slow multiexponential decline. The EC50 for the methanesulfonanilide I(Kr) blocker dofetilide was 12 +/- 2 nM. Induction of block depended on depolarization beyond the threshold for channel opening. Time-dependent block developed slowly, with tau = 5.2 +/- 0.6 sec (300 nM) at +10 mV, and was delayed by stronger depolarizations. This pattern suggested that dofetilide preferentially blocks open (or activated) channels and that the fast inactivation may competitively slow the binding kinetics. The latter occurrence was further supported by a simplified mathematical model that addressed the impact on binding kinetics of fast inactivation. These results indicate that the HERG gene product encodes an alpha subunit that, when expressed in mammalian cells, displays both the major functional and pharmacological properties of native I(Kr). Dofetilide acts as a slow-onset/slow-offset open channel blocker of this current at nanomolar concentrations.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 49, Issue 6
1 Jun 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
High affinity open channel block by dofetilide of HERG expressed in a human cell line.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

High affinity open channel block by dofetilide of HERG expressed in a human cell line.

D J Snyders and A Chaudhary
Molecular Pharmacology June 1, 1996, 49 (6) 949-955;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

High affinity open channel block by dofetilide of HERG expressed in a human cell line.

D J Snyders and A Chaudhary
Molecular Pharmacology June 1, 1996, 49 (6) 949-955;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics