Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes.

J L Barwick, L C Quattrochi, A S Mills, C Potenza, R H Tukey and P S Guzelian
Molecular Pharmacology July 1996, 50 (1) 10-16;
J L Barwick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L C Quattrochi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A S Mills
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Potenza
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R H Tukey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P S Guzelian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Interindividual variation in the spontaneous and in the glucocorticoid-or rifampicin-inducible expression of the CYP3A cytochromes P450, the dominant froms of this supergene family that catalyze the oxidation of numerous drugs and environmental chemicals in human liver, remains largely unexplained, due in part to the lack of a validated animal model. We analyzed the 5'-flanking sequences of CYP3A genes from the rat (CYP3A23, CYP3A2), rabbit (CYP3A6), and human (CYP3A4, CYP3A5, CYP3A7) and found variable regions separated by three areas (consensus I, II, and III) of sequence homology immediately upstream of their respective promoters. We used trans-species gene transfer in cellulo as a new approach for determining the basis for qualitative differences among species in liver expression of different forms of CYP3A. When we transfected into cultured rat hepatocytes vectors containing 5'-flanking DNA from CYP3A23, CYP3A4, or CYP3A6 genes, we found that CAT activity was induced on treatment with dexamethasone or pregnenolone-16 alpha-carbonitrile only if consensus II sequences were included. Rifampicin treatment had no effect. When the same constructions containing consensus II were transfected into rabbit hepatocytes, increased activity was observed on treatment of the cells with dexamethasone or with rifampicin but not with pregnenolone-16 alpha-carbonitrile. These results suggest that the host cellular environment rather than the structure of the gene dictates the pattern of CYP3A inducibility. The application of this new model system will provide a unique technique for identifying mechanisms of induction and advancing the development of appropriate toxicological models for human safety assessment.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 50, Issue 1
1 Jul 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes.

J L Barwick, L C Quattrochi, A S Mills, C Potenza, R H Tukey and P S Guzelian
Molecular Pharmacology July 1, 1996, 50 (1) 10-16;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes.

J L Barwick, L C Quattrochi, A S Mills, C Potenza, R H Tukey and P S Guzelian
Molecular Pharmacology July 1, 1996, 50 (1) 10-16;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics