Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.

C Liu, X Zhuo, F J Gonzalez and X Ding
Molecular Pharmacology October 1996, 50 (4) 781-788;
C Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X Zhuo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F J Gonzalez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytochrome P450 2A3 (CYP2A3) was previously identified in rat lung by cDNA cloning and recently found to be expressed at a high level in the olfactory mucosa. In the current study, CYP2A3 was expressed in insect cells lacking endogenous cytochrome P450 (P450) activity, and the substrate specificity of the recombinant cytochrome was characterized and compared with that of CYP2A6, a human ortholog of rat CYP2A3, which has been detected in human olfactory mucosa as well as in liver. The CYP2A3 and CYP2A6 cDNAs were cloned into baculovirus, and recombinant viruses were used to produce active enzymes in Spodoptera frugiperta (SF9) cells. The metabolic activities of S. frugiperta cell microsomal fractions containing CYP2A3 or CYP2A6 were studied in a reconstituted system with purified rabbit NADPH-P450 reductase. CYP2A3 was found to be active toward testosterone, producing 15 alpha-hydroxytestosterone and several other metabolites, but it had only low activity toward coumarin. On the other hand, CYP2A6 was active toward coumarin but not toward testosterone. However, both enzymes were active in the metabolic activation of hexamethylphosphoramide, a nasal procarcinogen, and 2,6-dichlorobenzonitrile (DCBN), a herbicide known to cause tissue-specific toxicity in the olfactory mucosa of rodents at very low doses. In addition, both enzymes were active toward 4-nitrophenol, a preferred substrate for CYP2E1. Consistent with CYP2A3 being a major catalyst in microsomal metabolism of DCBN, the activities of both CYP2A3 and rat olfactory microsomes in DCBN metabolism were inhibited strongly by metyrapone and methoxsalen (ID50 < 1 microM, with DCBN at 30 microM), but only marginally by 4-methylpyrazole, an inhibitor of CYP2E1. In contrast, the activity of CYP2A6 was only weakly inhibited by metyrapone or methoxsalen (ID50 > 50 microM). Thus, rat CYP2A3 and human CYP2A6 have differences in substrate specificity as well as tissue distributor. These findings should be taken into account when assessing the risk of exposure to potential nasal toxicants in humans.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 50, Issue 4
1 Oct 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.

C Liu, X Zhuo, F J Gonzalez and X Ding
Molecular Pharmacology October 1, 1996, 50 (4) 781-788;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.

C Liu, X Zhuo, F J Gonzalez and X Ding
Molecular Pharmacology October 1, 1996, 50 (4) 781-788;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics