Abstract
We compared the inhibition of HIV-1 reverse transcriptase (RT) by 1-[2',5'-bis-O-(t-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'- spiro-5"-(4"-amino-1", 2"-oxathiole-2",2"-dioxide)-3-ethylthymine (TSAOe3T) and the nonnucleoside RT inhibitor (NNRTI) 9-aminonevirapine (9-NH2N). Both compounds were equally effective against p51/p66 heterodimeric RT RNA-dependent DNA polymerase activity, although TSAOe3T was a much better inhibitor of the p51/p51 and p66/p66 RT homodimers. Inhibition by TSAOe3T and 9-NH2N combinations was essentially additive. TSAOe3T did not protect either free RT or the RT-template/ primer-deoxynucleoside triphosphate ternary complex from irreversible inactivation by the photolabel 9-azidonevirapine. Slight protection of the RT-template/primer binary complex was noted, but only at high TSAOe3T/photolabel ratios. Analysis of RT polymerization product profiles under both continuous- and single-processive cycle conditions showed that 9-NH2N prevented the formation of full-length product with a corresponding accumulation of smaller polymerization products. In contrast, all products formed in the absence of inhibitor, including full-length product, were noted in TSAOe3T-inhibited reactions, albeit at reduced levels. TSAOe3T thus inhibits HIV-1 RT by a different mechanism than NNRTI such as nevirapine. Our data suggest that TSAOe3T and 9-NH2N interact differently with HIV-1 RT, perhaps by binding to distinct sites on the enzyme.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|