Abstract
We sought to exploit glycosylated poly-L-lysine (pLK) to increase the uptake and biological antisense activity of a phosphorothioate oligonucleotide (pt-odn) [pt-odn complementary to the 3' noncoding region of intercellular adhesion molecule-1 (ICAM-1) (odn(ICAM-1))] complementary to the 3'-noncoding region of ICAM-1 in A549 cells. Dose-dependent inhibition of ICAM-1 expression was obtained (IC50 = 500 nM) through treatment of cells with odn(ICAM-1) complexed with pLK carrying fucose residues in the presence of 100 microM chloroquine. Alteration in the charge ratio between fucosylated pLK and pt-odn had a significant effect on the efficacy of inhibition (optimal conditions, charge ratio = 1.1). This effect was also dependent on the number of fucose moieties per pLK. Free pt-odn or pt-odn complexed with nonglycosylated pLK gave no inhibition at concentrations of < or = 2 microM. Two control pt-odn (one was targeted against an unrelated gene not present in these cells, gag(HIV), and the other had a randomized sequence) gave no inhibition of ICAM-1 expression in the presence or absence of pLK carrying fucose residues at concentrations of < or = 2 microM. When complexed with pLK carrying 100 fucose residues, the amount of cell-associated pt-odn was increased by 15-fold compared with the free pt-odn. Nongycosylated pLK also increased the amount of cell-associated pt-odn by >10 fold but did not alter the biological activity. These results demonstrate clearly the potential of glycosylated pLK as a pt-odn transporter.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|