Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum.

P G Bray, S R Hawley, M Mungthin and S A Ward
Molecular Pharmacology December 1996, 50 (6) 1559-1566;
P G Bray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S R Hawley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Mungthin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Ward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

At high molar excess, verapamil can selectively increase the accumulation and cytotoxicity of structurally dissimilar natural product drugs in many multidrug-resistant tumor cell lines. Such concentrations of verapamil are also capable of increasing the accumulation and activity of chloroquine in chloroquine-resistant strains of the human malaria parasite Plasmodium falciparum. Despite such similarities, it is not clear why chloroquine-resistant P. falciparum is often susceptible to closely related compounds such as amodiaquine, whereas cancer cells are cross-resistant to many structurally unrelated drugs. For 13 aminoquinoline and aminoacridine compounds, relative drug resistance was negatively correlated with lipid solubility at physiological pH (r2 = 0.90, p < 0.0001). The ability of verapamil (5 microM) to reverse drug resistance was also negatively correlated with lipid solubility (r2 = 0.88, p < 0.0001). Furthermore, molar refractivity was weakly correlated with relative drug resistance (r2 = 0.46, p < 0.05) and reversal of drug resistance (r2 = 0.52, p < 0.005). Verapamil increases chloroquine accumulation by resistant parasites, a mechanism suggested to account for its selective chemosensitization effect. We show that the initial rate of chloroquine accumulation by resistant parasites is increased by verapamil. This effect of verapamil is abolished when deoxy-glucose is substituted for glucose. Therefore, verapamil produces an energy-dependent increase in the permeability of resistant parasites to chloroquine. For a panel of four chloroquine-resistant and two chloroquine-susceptible isolates, the effect of verapamil on the accumulation of chloroquine and monodesethyl amodiaquine was found to be correlated (r2 = 0.96, p < 0.001). Verapamil chemosensitization was also correlated for the two drugs (r2 = 0.92, p < 0.005), suggesting a common mechanism. In summary, the degree of drug resistance and the extent of verapamil chemosensitization for a particular drug seem to be dependent on general physical features such as lipid solubility and molar refractivity rather than on closely defined structural parameters. These studies provide insight into this important resistance mechanism of malaria parasites and may provide direction for the development of new drugs that are effective against resistant parasites.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 50, Issue 6
1 Dec 1996
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum.

P G Bray, S R Hawley, M Mungthin and S A Ward
Molecular Pharmacology December 1, 1996, 50 (6) 1559-1566;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum.

P G Bray, S R Hawley, M Mungthin and S A Ward
Molecular Pharmacology December 1, 1996, 50 (6) 1559-1566;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics