Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor

Laurent Audoly and Richard M. Breyer
Molecular Pharmacology January 1997, 51 (1) 61-68; DOI: https://doi.org/10.1124/mol.51.1.61
Laurent Audoly
Division of Nephrology, and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2372
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard M. Breyer
Division of Nephrology, and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2372
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Expression of the rabbit EP3 receptor isoform 77A in COS1 and HEK293tsA201 cells demonstrated specific binding of [3H]prostaglandin (PG)E2 and receptor-evoked decreases in intracellular cAMP levels. Competition binding with PGE2, PGE2 methyl ester, misoprostol-free acid, misoprostol, and sulprostone suggested that a negative charge at the C1 position is essential for high affinity ligand binding and that the charge at this position is more important than steric bulk. Charged amino acid residues within the transmembrane (TM) domains of the receptor were mutated, and the resulting receptor proteins were analyzed for the effects of these mutations on receptor structure and/or function. Positively charged TM residues are candidates for interaction with the C1 carboxylic acid moiety of prostanoid ligands. Substitution of R329 (TM VII) with either alanine or glutamate resulted in a loss of both detectable [3H]PGE2 binding and receptor activation despite expression of the receptor protein as determined by immunoprecipitation and immunofluorescence. Substitution of K300 (TM VI) with alanine had no effect on binding or signal transduction. Substitution of the conserved aspartic acid at position 338 (TM VII) with alanine caused a loss of detectable receptor-evoked inhibition of cAMP generation, although this mutation did not appreciably affect ligand binding. These studies suggest that R329 but not K300 is a key determinant in receptor/ligand interaction. Furthermore, D338 plays a critical role in Gi activation by the EP3 receptor.

Footnotes

    • Received July 9, 1996.
    • Accepted October 10, 1996.
  • Send reprint requests to: Dr. Richard M. Breyer, Division of Nephrology, S3223 MCN, Vanderbilt University, Nashville, TN 37232-2372. E-mail:rich.breyer{at}mcmail.vanderbilt.edu

  • This work was supported in part by National Institutes of Health Grants DK46205 and DK37097 (R.M.B.).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 51 (1)
Molecular Pharmacology
Vol. 51, Issue 1
1 Jan 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor

Laurent Audoly and Richard M. Breyer
Molecular Pharmacology January 1, 1997, 51 (1) 61-68; DOI: https://doi.org/10.1124/mol.51.1.61

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Substitution of Charged Amino Acid Residues in Transmembrane Regions 6 and 7 Affect Ligand Binding and Signal Transduction of the Prostaglandin EP3 Receptor

Laurent Audoly and Richard M. Breyer
Molecular Pharmacology January 1, 1997, 51 (1) 61-68; DOI: https://doi.org/10.1124/mol.51.1.61
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Polypharmacology of CBL0137 in the African Trypanosome
  • Peptide-mediated differential signaling at GPR83
  • Therapeutic Effects of FGF23 Antagonists in Hyp Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics