Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A

Andre H. Lagrange, Oline K. Rønnekleiv and Martin J. Kelly
Molecular Pharmacology April 1997, 51 (4) 605-612; DOI: https://doi.org/10.1124/mol.51.4.605
Andre H. Lagrange
Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oline K. Rønnekleiv
Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin J. Kelly
Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

17β-Estradiol (E2) rapidly (<20 min) attenuates the ability of μ-opioids to hyperpolarize guinea pig hypothalamic (β-endorphin) neurons. In the current study, we used intracellular recordings from guinea pig hypothalamic slices to characterize the receptor and intracellular effector system mediating the rapid effects of E2. E2 acted stereospecifically with physiologically relevant concentration dependence (EC50 = 8 nm) to cause a 4-fold reduction in the potency of a μ-opioid agonist to activate an inwardly rectifying K+conductance. Using Schild analysis to estimate the affinity of the μ-opioid receptor for an antagonist (naloxone), we found that estrogen did not compete for the μ-opioid receptor or alter the affinity of the μ receptor. Both the nonsteroidal estrogen diethylstilbestrol and the “pure” antiestrogen ICI 164,384 blocked the actions of E2, the latter with a subnanomolar affinity. The protein synthesis inhibitor cycloheximide did not block the estrogenic uncoupling of the μ-opioid receptor from its K+ channel, implying a nongenomic mechanism of action by E2. The actions of E2 were mimicked by the protein kinase A (PKA) activators forskolin and cAMP, Sp-isomer triethylammonium salt. Furthermore, the selective PKA antagonists cAMP, Rp-isomer triethylammonium salt and KT5720, which have different chemical structures and modes of action, both blocked the effects of E2. Thus, estrogen binds to a specific receptor that activates PKA to rapidly uncouple the μ-opioid receptor from its K+ channel. Because we have previously shown that γ-aminobutyric acidB receptors are also uncoupled by estrogen, this mechanism of action has the potential to alter synaptic transmission via G protein-coupled receptors throughout the brain.

Footnotes

    • Received November 26, 1996.
    • Accepted December 17, 1996.
  • Send reprint requests to: Martin J. Kelly, Ph.D., Department of Physiology & Pharmacology, Oregon Health Sciences University, Portland OR 97201. E-mail: kellym{at}ohsu.edu

  • This work was supported by United States Public Health Service Grants DA05158 and DA00192 (Research Scientist Development Award) (M.J.K.) and MH10327 (NRSA) (A.H.L.).

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 51 (4)
Molecular Pharmacology
Vol. 51, Issue 4
1 Apr 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A

Andre H. Lagrange, Oline K. Rønnekleiv and Martin J. Kelly
Molecular Pharmacology April 1, 1997, 51 (4) 605-612; DOI: https://doi.org/10.1124/mol.51.4.605

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A

Andre H. Lagrange, Oline K. Rønnekleiv and Martin J. Kelly
Molecular Pharmacology April 1, 1997, 51 (4) 605-612; DOI: https://doi.org/10.1124/mol.51.4.605
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Fatty Acid Amide Hydrolase in Cisplatin Nephrotoxicity
  • Use-Dependent Relief of A-887826 Inhibition
  • Benzbromarone Relaxes Airway Smooth Muscle via BK Activation
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics