Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

γ-Glutamyl Hydrolase from Human Sarcoma HT-1080 Cells: Characterization and Inhibition by Glutamine Antagonists

Mark C. Waltham, Wei-Wei Li, Helena Gritsman, William P. Tong and Joseph R. Bertino
Molecular Pharmacology May 1997, 51 (5) 825-832; DOI: https://doi.org/10.1124/mol.51.5.825
Mark C. Waltham
Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wei-Wei Li
Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Helena Gritsman
Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William P. Tong
Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph R. Bertino
Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Elevated γ-glutamyl hydrolase (GGH) activity as a contributing factor in mechanisms of acquired and intrinsic antifolate resistance has been reported for several cultured cell lines. Despite this, little is known about this enzyme, especially the human species. Using the human HT-1080 sarcoma line, we observed the secretion of GGH activity into media during culture (a phenomenon that could be markedly stimulated by exposure to NH4Cl) and an acidic pH optimum for in vitro catalytic activity of the enzyme. These properties are consistent with a lysosomal location for the enzyme. Unlike rodent GGH, preparations of HT-1080 enzyme (purified ≤2000-fold) displayed exopeptidase activity in cleaving successive end-terminal γ-glutamyl groups from poly-l-γ-glutamyl derivatives of folate, methotrexate (MTX), and para-aminobenzoic acid substrates and a marked preference for long-chain polyglutamates (K m values for glu4versus glu1 derivatives were 17- and 15-fold lower for folate and MTX versions, respectively). Using an in vitro assay screen, several glutamine antagonists [i.e., 6-diazo-5-oxo-norleucine (DON), acivicin, and azaserine] were identified as human GGH inhibitors, with DON being the most potent and displaying time-dependent inhibition. In cell culture experiments, simultaneous exposure of DON (10 μm) and [3H]MTX for 24 hr resulted in modest elevations of the long-chain γ-glutamyl derivatives of the antifolate for HT-1080 and another human sarcoma line. These compounds may serve as useful lead compounds in the development of specific GGH inhibitors for use in examining the relationship between GGH activity and antifolate action and may potentially be used in clinical combination with antifolates that require polyglutamylation for effective cellular retention.

Footnotes

    • Received October 21, 1996.
    • Accepted January 21, 1997.
  • Send reprint requests to: Dr. J. R. Bertino, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 78, New York, NY 10021. E-mail: j-bertino{at}mskcc.org

  • This work was supported by United States Public Health Service Grant CA08010. J.R.B. is an American Cancer Society Professor.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 51 (5)
Molecular Pharmacology
Vol. 51, Issue 5
1 May 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
γ-Glutamyl Hydrolase from Human Sarcoma HT-1080 Cells: Characterization and Inhibition by Glutamine Antagonists
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

γ-Glutamyl Hydrolase from Human Sarcoma HT-1080 Cells: Characterization and Inhibition by Glutamine Antagonists

Mark C. Waltham, Wei-Wei Li, Helena Gritsman, William P. Tong and Joseph R. Bertino
Molecular Pharmacology May 1, 1997, 51 (5) 825-832; DOI: https://doi.org/10.1124/mol.51.5.825

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

γ-Glutamyl Hydrolase from Human Sarcoma HT-1080 Cells: Characterization and Inhibition by Glutamine Antagonists

Mark C. Waltham, Wei-Wei Li, Helena Gritsman, William P. Tong and Joseph R. Bertino
Molecular Pharmacology May 1, 1997, 51 (5) 825-832; DOI: https://doi.org/10.1124/mol.51.5.825
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results and Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Analgesic Effects and Mechanisms of Licochalcones
  • Induced Fit Ligand Binding to CYP3A4
  • Englerin A Inhibits T-Type Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics