Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Rapid CommunicationAccelerated Communication

Activation of Type II Adenylate Cyclase by D2 and D4 but Not D3 Dopamine Receptors

Val J. Watts and Kim A. Neve
Molecular Pharmacology August 1997, 52 (2) 181-186; DOI: https://doi.org/10.1124/mol.52.2.181
Val J. Watts
Medical Research Service, Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim A. Neve
Medical Research Service, Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health Sciences University, Portland, Oregon 97201
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The D2-like dopamine receptors couple to a variety of signal transduction pathways, including inhibition of adenylate cyclase, mitogenesis, and activation of potassium channels. Although these effects are mediated via pertussis toxin-sensitive G proteins, Gi/o, it is likely that some of these effects are influenced by the release of G protein βγ subunits. Type II adenylate cyclase (ACII) is highly regulated by multiple biochemical stimuli, including protein kinase C, forskolin, G protein α subunits, and G protein βγ subunits. The ability of βγ subunits to activate this enzyme in the presence of activated αs has been particularly well characterized. Although stimulation by βγ subunits has been described as conditional on the presence of activated αs, βγ subunits also potentiate ACII activity after activation of protein kinase C. We created stable cell lines expressing ACII and the D2L receptor, the D3 receptor, or the D4.4 receptor. Activation of D2L or D4.4 receptors, but not D3 receptors, potentiated β-adrenergic receptor/Gs-stimulated activity of ACII, as measured by the intracellular accumulation of cAMP. Similarly, stimulation of D2L or D4.4 receptors potentiated phorbol ester-stimulated ACII activity in the absence of activated αs, whereas stimulation of D3receptors did not. The effect of D2-like receptor stimulation was blocked by pretreatment with pertussis toxin and by inhibition of protein kinase C. We propose that activation of both D2L and D4.4 dopamine receptors potentiated phorbol-12-myristate-13-acetate-stimulated ACII activity through the release of βγ subunits from pertussis toxin-sensitive G proteins. In contrast, the lack of D3 receptor-mediated effects suggests that stimulation of D3 receptors does not result in an appreciable release of βγ subunits.

Footnotes

    • Received March 3, 1997.
    • Accepted April 17, 1997.
  • Send reprint requests to: Val J. Watts, Medical Research Service (151LL), VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97201. E-mail:wattsv{at}ohsu.edu

  • This work was supported by the Johnson and Johnson Focused Giving Program, the Veterans Affairs Merit Review and Research Career Scientist Programs, a Young Investigator Award from the National Alliance for Research on Schizophrenia and Depression, and T32 DA07262.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 52 (2)
Molecular Pharmacology
Vol. 52, Issue 2
1 Aug 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of Type II Adenylate Cyclase by D2 and D4 but Not D3 Dopamine Receptors
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rapid CommunicationAccelerated Communication

Activation of Type II Adenylate Cyclase by D2 and D4 but Not D3 Dopamine Receptors

Val J. Watts and Kim A. Neve
Molecular Pharmacology August 1, 1997, 52 (2) 181-186; DOI: https://doi.org/10.1124/mol.52.2.181

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Rapid CommunicationAccelerated Communication

Activation of Type II Adenylate Cyclase by D2 and D4 but Not D3 Dopamine Receptors

Val J. Watts and Kim A. Neve
Molecular Pharmacology August 1, 1997, 52 (2) 181-186; DOI: https://doi.org/10.1124/mol.52.2.181
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GABAA Receptor Desensitization by Low GABA
  • Structure of the Diltiazem Receptor Site on Calcium Channels
  • 5-HT and Sleep
Show more Accelerated Communication

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics