Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Differential Expression of the UGT1A Locus in Human Liver, Biliary, and Gastric Tissue: Identification ofUGT1A7 and UGT1A10 Transcripts in Extrahepatic Tissue

Christian P. Strassburg, Karl Oldhafer, Michael P. Manns and Robert H. Tukey
Molecular Pharmacology August 1997, 52 (2) 212-220; DOI: https://doi.org/10.1124/mol.52.2.212
Christian P. Strassburg
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl Oldhafer
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. Manns
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert H. Tukey
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Family 1 UDP-glucuronosyltransferases (UGTs) (UGT1A) are encoded by a locus that predicts the existence of at least nine individual proteins. The different proteins are generated by exon-sharing, which results in the production of a family of proteins that contain identical, 245-amino acid, carboxyl-terminal domains and an amino-terminal region of approximately 280 amino acids. The diversity of theUGT1A locus suggests the existence of complex regulation, most likely designed to account for the variable and specific glucuronidation requirements. However, the tissue-specific and extrahepatic regulation of the complete UGT1A locus has not been defined to date. In this study, quantitative duplex reverse transcription-polymerase chain reaction was used to analyze UGT1A RNA expression in 16 hepatic, four biliary, and two gastric human tissue specimens. UGT1A3 and UGT1A6 were found to be expressed in the three tissues, whereas UGT1A5 and UGT1A8 were not expressed. Hepatocellular and biliary tissue expressed UGT1A1 and UGT1A4 but hepatocellular tissue uniquely expressed UGT1A9, whereas biliary tissue expressed UGT1A10. In contrast to hepatocellular tissue, gastric tissue expressed UGT1A7 in addition to UGT1A10. The expression of UGT1A9 in hepatic tissue, UGT1A7 in gastric tissue, and UGT1A10 in biliary and gastric tissue provides evidence for the selective regulation of theUGT1A locus in hepatic and extrahepatic tissues. The newly identified UGT1A7 and UGT1A10 transcripts were cloned and found to be 95.86% identical. Sequence analysis confirmed two proteins with divergent amino termini of 285 residues and identical carboxyl termini of 245 residues. This study provides evidence for hepatic and extrahepatic regulation of the human UGT1A locus and identifies two novel extrahepatic transcripts of the UGT1A family.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 52 (2)
Molecular Pharmacology
Vol. 52, Issue 2
1 Aug 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Expression of the UGT1A Locus in Human Liver, Biliary, and Gastric Tissue: Identification ofUGT1A7 and UGT1A10 Transcripts in Extrahepatic Tissue
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Differential Expression of the UGT1A Locus in Human Liver, Biliary, and Gastric Tissue: Identification ofUGT1A7 and UGT1A10 Transcripts in Extrahepatic Tissue

Christian P. Strassburg, Karl Oldhafer, Michael P. Manns and Robert H. Tukey
Molecular Pharmacology August 1, 1997, 52 (2) 212-220; DOI: https://doi.org/10.1124/mol.52.2.212

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Differential Expression of the UGT1A Locus in Human Liver, Biliary, and Gastric Tissue: Identification ofUGT1A7 and UGT1A10 Transcripts in Extrahepatic Tissue

Christian P. Strassburg, Karl Oldhafer, Michael P. Manns and Robert H. Tukey
Molecular Pharmacology August 1, 1997, 52 (2) 212-220; DOI: https://doi.org/10.1124/mol.52.2.212
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Mechanism of the selective action of paraherquamide A
  • Relapsed-Leukemia Model with NT5C2/PRPS1 Hotspot Mutations
  • The Binding Site for KCI807 in the Androgen Receptor
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics