Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Research ArticleArticle

Constitutive Activity of a Chimeric D2/D1Dopamine Receptor

Laura B. Kozell and Kim A. Neve
Molecular Pharmacology December 1997, 52 (6) 1137-1149; DOI: https://doi.org/10.1124/mol.52.6.1137
Laura B. Kozell
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kim A. Neve
1 2
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Chimeric D1/D2 receptors were constructed to identify structural determinants of drug affinity and efficacy. We previously reported that chimeras that had D1 receptor transmembrane domain VII together with amino-terminal sequence from the D2 receptor were nonfunctional. D2/D1 chimeras were constructed that contained D2 receptor sequence at the amino- and carboxyl-terminal ends and D1 receptor sequence in the intervening region. Chimeric receptors with D2 sequence from transmembrane domain 7 to the carboxyl terminus together with D2 receptor sequence from the amino terminus through transmembrane helix 4 (D2[1–4,7]) and 5 (D2[1–5,7]) bound [3H]spiperone with high affinity, consistent with the hypothesis that D2 receptor transmembrane domain I or II is incompatible with D1 receptor transmembrane domain VII. D2[1–4,7] and D2[1–5,7] had affinities similar to D1 and D2 receptors for most nonselective dopamine antagonists and had affinities for most of the selective antagonists that were intermediate between those of the parent receptors. D2[1–4,7] and D2[1–5,7]mediated dopamine receptor agonist-induced stimulation and inhibition, respectively, of cAMP accumulation. The more efficient coupling of D2[1–5,7] to inhibition of cAMP accumulation, compared with the coupling of D2[5–7] and D2[3–7], supports the view that multiple D2 receptor cytoplasmic domains acting in concert are necessary for receptor activation of Gi. In contrast, D2[1–4,7], which contains only one cytoplasmic loop (the third) from the D1 receptor, is capable of activating Gs. D2[1–4,7]exhibited several characteristics of a constitutively active receptor, including enhanced basal (unliganded) stimulation of cAMP accumulation, high affinity for agonists even in the presence of GTP, and blunted agonist-stimulated cAMP accumulation. A number of dopamine receptor antagonists were inverse agonists at D2[1–4,7], inhibiting basal cAMP accumulation. Some of these drugs were also inverse agonists at the D1 receptor. Interestingly, several antagonists also potentiated forskolin-stimulated cAMP accumulation via D2[1–5,7] and via the D2 receptor, which could reflect inverse agonist inhibition of native constitutive activity of this receptor.

Footnotes

    • Received April 7, 1997.
    • Accepted August 29, 1997.
  • Send reprint requests to: Dr. Kim Neve, Research Service (151LL), VA Medical Center, 3710 S.W. U.S. Veterans Hospital Road, Portland, OR 97201. E-mail: nevek{at}teleport.com

  • This work was supported by the Veterans Affairs Merit Review and Research Career Scientist Programs.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology: 52 (6)
Molecular Pharmacology
Vol. 52, Issue 6
1 Dec 1997
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Constitutive Activity of a Chimeric D2/D1Dopamine Receptor
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Constitutive Activity of a Chimeric D2/D1Dopamine Receptor

Laura B. Kozell and Kim A. Neve
Molecular Pharmacology December 1, 1997, 52 (6) 1137-1149; DOI: https://doi.org/10.1124/mol.52.6.1137

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Constitutive Activity of a Chimeric D2/D1Dopamine Receptor

Laura B. Kozell and Kim A. Neve
Molecular Pharmacology December 1, 1997, 52 (6) 1137-1149; DOI: https://doi.org/10.1124/mol.52.6.1137
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • EIPA, HMA and SMN2 gene regulation
  • Clc-2 has minor role in intestinal Cl- secretion
  • Resveratrol acts as an NR4A1 antagonist in lung cancer.
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics